MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.5 Unicode version

Theorem pm1.5 510
Description: Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.5  |-  ( (
ph  \/  ( ps  \/  ch ) )  -> 
( ps  \/  ( ph  \/  ch ) ) )

Proof of Theorem pm1.5
StepHypRef Expression
1 orc 376 . . 3  |-  ( ph  ->  ( ph  \/  ch ) )
21olcd 384 . 2  |-  ( ph  ->  ( ps  \/  ( ph  \/  ch ) ) )
3 olc 375 . . 3  |-  ( ch 
->  ( ph  \/  ch ) )
43orim2i 506 . 2  |-  ( ( ps  \/  ch )  ->  ( ps  \/  ( ph  \/  ch ) ) )
52, 4jaoi 370 1  |-  ( (
ph  \/  ( ps  \/  ch ) )  -> 
( ps  \/  ( ph  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem is referenced by:  or12  511  meran1  24024  meran3  24026
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator