Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.251 Unicode version

Theorem pm10.251 26955
Description: Theorem *10.251 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm10.251  |-  ( A. x  -.  ph  ->  -.  A. x ph )

Proof of Theorem pm10.251
StepHypRef Expression
1 alnex 1531 . 2  |-  ( A. x  -.  ph  <->  -.  E. x ph )
2 19.2 1672 . . 3  |-  ( A. x ph  ->  E. x ph )
32con3i 129 . 2  |-  ( -. 
E. x ph  ->  -. 
A. x ph )
41, 3sylbi 189 1  |-  ( A. x  -.  ph  ->  -.  A. x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6   A.wal 1528   E.wex 1529
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1312  df-fal 1313  df-ex 1530
  Copyright terms: Public domain W3C validator