Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.57 Unicode version

Theorem pm10.57 26919
Description: Theorem *10.57 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm10.57  |-  ( A. x ( ph  ->  ( ps  \/  ch )
)  ->  ( A. x ( ph  ->  ps )  \/  E. x
( ph  /\  ch )
) )

Proof of Theorem pm10.57
StepHypRef Expression
1 alnex 1569 . . . 4  |-  ( A. x  -.  ( ph  /\  ch )  <->  -.  E. x
( ph  /\  ch )
)
2 imnan 413 . . . . . 6  |-  ( (
ph  ->  -.  ch )  <->  -.  ( ph  /\  ch ) )
3 pm2.53 364 . . . . . . . 8  |-  ( ( ps  \/  ch )  ->  ( -.  ps  ->  ch ) )
43con1d 118 . . . . . . 7  |-  ( ( ps  \/  ch )  ->  ( -.  ch  ->  ps ) )
54imim3i 57 . . . . . 6  |-  ( (
ph  ->  ( ps  \/  ch ) )  ->  (
( ph  ->  -.  ch )  ->  ( ph  ->  ps ) ) )
62, 5syl5bir 211 . . . . 5  |-  ( (
ph  ->  ( ps  \/  ch ) )  ->  ( -.  ( ph  /\  ch )  ->  ( ph  ->  ps ) ) )
76al2imi 1549 . . . 4  |-  ( A. x ( ph  ->  ( ps  \/  ch )
)  ->  ( A. x  -.  ( ph  /\  ch )  ->  A. x
( ph  ->  ps )
) )
81, 7syl5bir 211 . . 3  |-  ( A. x ( ph  ->  ( ps  \/  ch )
)  ->  ( -.  E. x ( ph  /\  ch )  ->  A. x
( ph  ->  ps )
) )
98con1d 118 . 2  |-  ( A. x ( ph  ->  ( ps  \/  ch )
)  ->  ( -.  A. x ( ph  ->  ps )  ->  E. x
( ph  /\  ch )
) )
109orrd 369 1  |-  ( A. x ( ph  ->  ( ps  \/  ch )
)  ->  ( A. x ( ph  ->  ps )  \/  E. x
( ph  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359    /\ wa 360   A.wal 1532   E.wex 1537
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-ex 1538
  Copyright terms: Public domain W3C validator