Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.58 Unicode version

Theorem pm11.58 27251
Description: Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.58  |-  ( E. x ph  <->  E. x E. y ( ph  /\  [ y  /  x ] ph ) )
Distinct variable group:    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem pm11.58
StepHypRef Expression
1 19.8a 1754 . . . . 5  |-  ( ph  ->  E. x ph )
2 nfv 1626 . . . . . 6  |-  F/ y
ph
32sb8e 2119 . . . . 5  |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
41, 3sylib 189 . . . 4  |-  ( ph  ->  E. y [ y  /  x ] ph )
54pm4.71i 614 . . 3  |-  ( ph  <->  (
ph  /\  E. y [ y  /  x ] ph ) )
6 19.42v 1917 . . 3  |-  ( E. y ( ph  /\  [ y  /  x ] ph )  <->  ( ph  /\  E. y [ y  /  x ] ph ) )
75, 6bitr4i 244 . 2  |-  ( ph  <->  E. y ( ph  /\  [ y  /  x ] ph ) )
87exbii 1589 1  |-  ( E. x ph  <->  E. x E. y ( ph  /\  [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1547   [wsb 1655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656
  Copyright terms: Public domain W3C validator