Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.59 Unicode version

Theorem pm11.59 26958
Description: Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
pm11.59  |-  ( A. x ( ph  ->  ps )  ->  A. y A. x ( ( ph  /\ 
[ y  /  x ] ph )  ->  ( ps  /\  [ y  /  x ] ps ) ) )
Distinct variable groups:    ph, y    ps, y
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem pm11.59
StepHypRef Expression
1 nfv 1629 . . 3  |-  F/ y ( ph  ->  ps )
21nfal 1732 . 2  |-  F/ y A. x ( ph  ->  ps )
3 ax-4 1692 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  ps ) )
4 a4sbim 1969 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )
53, 4anim12d 548 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( ( ph  /\  [ y  /  x ] ph )  -> 
( ps  /\  [
y  /  x ] ps ) ) )
65a5i 1721 . 2  |-  ( A. x ( ph  ->  ps )  ->  A. x
( ( ph  /\  [ y  /  x ] ph )  ->  ( ps 
/\  [ y  /  x ] ps ) ) )
72, 6alrimi 1706 1  |-  ( A. x ( ph  ->  ps )  ->  A. y A. x ( ( ph  /\ 
[ y  /  x ] ph )  ->  ( ps  /\  [ y  /  x ] ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1532   [wsb 1883
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884
  Copyright terms: Public domain W3C validator