Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.195 Unicode version

Theorem pm13.195 27284
Description: Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3130. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
Assertion
Ref Expression
pm13.195  |-  ( E. y ( y  =  A  /\  ph )  <->  [. A  /  y ]. ph )
Distinct variable group:    y, A
Allowed substitution hint:    ph( y)

Proof of Theorem pm13.195
StepHypRef Expression
1 sbc5 3130 . 2  |-  ( [. A  /  y ]. ph  <->  E. y
( y  =  A  /\  ph ) )
21bicomi 194 1  |-  ( E. y ( y  =  A  /\  ph )  <->  [. A  /  y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649   [.wsbc 3106
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-v 2903  df-sbc 3107
  Copyright terms: Public domain W3C validator