Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.195 Structured version   Unicode version

Theorem pm13.195 27581
Description: Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3177. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
Assertion
Ref Expression
pm13.195  |-  ( E. y ( y  =  A  /\  ph )  <->  [. A  /  y ]. ph )
Distinct variable group:    y, A
Allowed substitution hint:    ph( y)

Proof of Theorem pm13.195
StepHypRef Expression
1 sbc5 3177 . 2  |-  ( [. A  /  y ]. ph  <->  E. y
( y  =  A  /\  ph ) )
21bicomi 194 1  |-  ( E. y ( y  =  A  /\  ph )  <->  [. A  /  y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652   [.wsbc 3153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154
  Copyright terms: Public domain W3C validator