MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.01 Unicode version

Theorem pm2.01 159
Description: Reductio ad absurdum. Theorem *2.01 of [WhiteheadRussell] p. 100. (Contributed by NM, 18-Aug-1993.) (Proof shortened by O'Cat, 21-Nov-2008.) (Proof shortened by Wolf Lammen, 31-Oct-2012.)
Assertion
Ref Expression
pm2.01  |-  ( (
ph  ->  -.  ph )  ->  -.  ph )

Proof of Theorem pm2.01
StepHypRef Expression
1 id 20 . 2  |-  ( -. 
ph  ->  -.  ph )
21, 1ja 152 1  |-  ( (
ph  ->  -.  ph )  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 4    -> wi 5
This theorem is referenced by:  bijust  174  pm4.8  353  dtrucor2  4082  ominf  6934  elirr  7170  hfninf  23796
This theorem was proved from axioms:  ax-1 6  ax-2 7  ax-3 8  ax-mp 9
  Copyright terms: Public domain W3C validator