MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.1 Unicode version

Theorem pm2.1 406
Description: Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Assertion
Ref Expression
pm2.1  |-  ( -. 
ph  \/  ph )

Proof of Theorem pm2.1
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
21imori 402 1  |-  ( -. 
ph  \/  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 357
This theorem is referenced by:  pwundifOLD  4301  lelttric  8927  hashbclem  11390  hiidge0  21677  xrlelttric  23250  nofv  24311  en3lpVD  28621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator