MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.3 Unicode version

Theorem pm2.3 557
Description: Theorem *2.3 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.3  |-  ( (
ph  \/  ( ps  \/  ch ) )  -> 
( ph  \/  ( ch  \/  ps ) ) )

Proof of Theorem pm2.3
StepHypRef Expression
1 pm1.4 377 . 2  |-  ( ( ps  \/  ch )  ->  ( ch  \/  ps ) )
21orim2i 506 1  |-  ( (
ph  \/  ( ps  \/  ch ) )  -> 
( ph  \/  ( ch  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem is referenced by:  meran1  24258  meran3  24260
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator