MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.4 Unicode version

Theorem pm2.4 561
Description: Theorem *2.4 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.4  |-  ( (
ph  \/  ( ph  \/  ps ) )  -> 
( ph  \/  ps ) )

Proof of Theorem pm2.4
StepHypRef Expression
1 orc 376 . 2  |-  ( ph  ->  ( ph  \/  ps ) )
2 id 21 . 2  |-  ( (
ph  \/  ps )  ->  ( ph  \/  ps ) )
31, 2jaoi 370 1  |-  ( (
ph  \/  ( ph  \/  ps ) )  -> 
( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator