MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.46 Unicode version

Theorem pm2.46 388
Description: Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.46  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )

Proof of Theorem pm2.46
StepHypRef Expression
1 olc 374 . 2  |-  ( ps 
->  ( ph  \/  ps ) )
21con3i 129 1  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358
This theorem is referenced by:  pm2.48  390  pm2.49  391  rb-ax3  1525  eueq3  3052  ltnsym  9105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360
  Copyright terms: Public domain W3C validator