MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.46 Structured version   Unicode version

Theorem pm2.46 389
Description: Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.46  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )

Proof of Theorem pm2.46
StepHypRef Expression
1 olc 375 . 2  |-  ( ps 
->  ( ph  \/  ps ) )
21con3i 130 1  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359
This theorem is referenced by:  pm2.48  391  pm2.49  392  rb-ax3  1529  eueq3  3111  ltnsym  9177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator