MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.48 Unicode version

Theorem pm2.48 389
Description: Theorem *2.48 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.48  |-  ( -.  ( ph  \/  ps )  ->  ( ph  \/  -.  ps ) )

Proof of Theorem pm2.48
StepHypRef Expression
1 pm2.46 387 . 2  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )
21olcd 382 1  |-  ( -.  ( ph  \/  ps )  ->  ( ph  \/  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator