MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.5 Unicode version

Theorem pm2.5 144
Description: Theorem *2.5 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 9-Oct-2012.)
Assertion
Ref Expression
pm2.5  |-  ( -.  ( ph  ->  ps )  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.5
StepHypRef Expression
1 simplim 143 . 2  |-  ( -.  ( ph  ->  ps )  ->  ph )
21pm2.24d 135 1  |-  ( -.  ( ph  ->  ps )  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem is referenced by:  pm5.11  854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
  Copyright terms: Public domain W3C validator