MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.53 Unicode version

Theorem pm2.53 363
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.53  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )

Proof of Theorem pm2.53
StepHypRef Expression
1 df-or 360 . 2  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
21biimpi 187 1  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358
This theorem is referenced by:  jaoi  369  orel1  372  pm2.63  764  pm2.8  824  mtp-orOLD  1548  19.33b  1618  soxp  6450  iccpnfcnv  18957  elpreq  23987  xlt2addrd  24112  xrge0iifcnv  24307  expdioph  27031  pm10.57  27481  stoweidlem39  27702  vk15.4j  28467  vk15.4jVD  28880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360
  Copyright terms: Public domain W3C validator