MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.62 Unicode version

Theorem pm2.62 400
Description: Theorem *2.62 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Dec-2013.)
Assertion
Ref Expression
pm2.62  |-  ( (
ph  \/  ps )  ->  ( ( ph  ->  ps )  ->  ps )
)

Proof of Theorem pm2.62
StepHypRef Expression
1 pm2.621 399 . 2  |-  ( (
ph  ->  ps )  -> 
( ( ph  \/  ps )  ->  ps )
)
21com12 29 1  |-  ( (
ph  \/  ps )  ->  ( ( ph  ->  ps )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359
This theorem is referenced by:  dfor2  402  plyrem  19679
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator