MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.64 Unicode version

Theorem pm2.64 767
Description: Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.64  |-  ( (
ph  \/  ps )  ->  ( ( ph  \/  -.  ps )  ->  ph )
)

Proof of Theorem pm2.64
StepHypRef Expression
1 ax-1 7 . . 3  |-  ( ph  ->  ( ( ph  \/  ps )  ->  ph )
)
2 orel2 374 . . 3  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  ->  ph )
)
31, 2jaoi 370 . 2  |-  ( (
ph  \/  -.  ps )  ->  ( ( ph  \/  ps )  ->  ph )
)
43com12 29 1  |-  ( (
ph  \/  ps )  ->  ( ( ph  \/  -.  ps )  ->  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ wo 359
This theorem is referenced by:  hirstL-ax3  27114
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator