MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.13 Unicode version

Theorem pm3.13 488
Description: Theorem *3.13 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.13  |-  ( -.  ( ph  /\  ps )  ->  ( -.  ph  \/  -.  ps ) )

Proof of Theorem pm3.13
StepHypRef Expression
1 pm3.11 486 . 2  |-  ( -.  ( -.  ph  \/  -.  ps )  ->  ( ph  /\  ps ) )
21con1i 123 1  |-  ( -.  ( ph  /\  ps )  ->  ( -.  ph  \/  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359
This theorem is referenced by:  naim1  26082  naim2  26083  vk15.4j  28467  vk15.4jVD  28880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
  Copyright terms: Public domain W3C validator