MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.21 Unicode version

Theorem pm3.21 436
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm3.21  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )

Proof of Theorem pm3.21
StepHypRef Expression
1 pm3.2 435 . 2  |-  ( ps 
->  ( ph  ->  ( ps  /\  ph ) ) )
21com12 29 1  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359
This theorem is referenced by:  pm3.22  437  iba  490  ancr  533  anc2r  540  pm5.31  572  19.41  1889  19.41OLD  1890  2mo  2318  smoord  6565  fisupg  7293  winalim2  8506  aalioulem5  20122  musum  20845  chrelat2i  23718  relin01  24975  waj-ax  25880  pm11.71  27267  onfrALTlem2  27977  19.41rg  27982  onfrALTlem2VD  28344  2pm13.193VD  28358  a9e2eqVD  28362  bnj1173  28711  hlrelat2  29519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator