MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.21 Unicode version

Theorem pm3.21 436
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm3.21  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )

Proof of Theorem pm3.21
StepHypRef Expression
1 pm3.2 435 . 2  |-  ( ps 
->  ( ph  ->  ( ps  /\  ph ) ) )
21com12 29 1  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359
This theorem is referenced by:  pm3.22  437  iba  490  ancr  533  anc2r  540  pm5.31  572  19.41  1896  19.41OLD  1897  2mo  2336  smoord  6590  fisupg  7318  winalim2  8531  aalioulem5  20210  musum  20933  chrelat2i  23825  relin01  25151  waj-ax  26072  pm11.71  27468  ssfz12  27980  onfrALTlem2  28347  19.41rg  28352  onfrALTlem2VD  28714  2pm13.193VD  28728  a9e2eqVD  28732  bnj1173  29081  hlrelat2  29889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator