MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.21 Unicode version

Theorem pm3.21 435
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm3.21  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )

Proof of Theorem pm3.21
StepHypRef Expression
1 pm3.2 434 . 2  |-  ( ps 
->  ( ph  ->  ( ps  /\  ph ) ) )
21com12 27 1  |-  ( ph  ->  ( ps  ->  ( ps  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  pm3.22  436  iba  489  ancr  532  anc2r  539  pm5.31  571  19.41  1827  2mo  2234  smoord  6398  fisupg  7121  winalim2  8334  aalioulem5  19732  musum  20447  chrelat2i  22961  relin01  24104  waj-ax  24925  sssu  25244  pm11.71  27699  onfrALTlem2  28610  19.41rg  28615  onfrALTlem2VD  28981  2pm13.193VD  28995  a9e2eqVD  28999  bnj1173  29348  hlrelat2  30214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator