MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.3 Unicode version

Theorem pm3.3 431
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.3  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ph  ->  ( ps 
->  ch ) ) )

Proof of Theorem pm3.3
StepHypRef Expression
1 id 19 . 2  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ( ph  /\  ps )  ->  ch )
)
21exp3a 425 1  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ph  ->  ( ps 
->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  impexp  433  pm4.79  566  trer  26330  trsbc  28603  simplbi2VD  28938  exbirVD  28945  exbiriVD  28946  3impexpVD  28948  trsbcVD  28969  simplbi2comgVD  28980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator