MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.3 Unicode version

Theorem pm3.3 433
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.3  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ph  ->  ( ps 
->  ch ) ) )

Proof of Theorem pm3.3
StepHypRef Expression
1 id 21 . 2  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ( ph  /\  ps )  ->  ch )
)
21exp3a 427 1  |-  ( ( ( ph  /\  ps )  ->  ch )  -> 
( ph  ->  ( ps 
->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  impexp  435  pm4.79  569  trer  25626  trsbc  27575  simplbi2VD  27890  exbirVD  27897  exbiriVD  27898  3impexpVD  27900  trsbcVD  27921  simplbi2comgVD  27932
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator