MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.33 Unicode version

Theorem pm3.33 571
Description: Theorem *3.33 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.33  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ch ) )  ->  ( ph  ->  ch ) )

Proof of Theorem pm3.33
StepHypRef Expression
1 imim1 72 . 2  |-  ( (
ph  ->  ps )  -> 
( ( ps  ->  ch )  ->  ( ph  ->  ch ) ) )
21imp 420 1  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ch ) )  ->  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  alsyl  1607  2sb5ndALT  27977  bnj1023  28079  bnj907  28264
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator