MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.34 Unicode version

Theorem pm3.34 569
Description: Theorem *3.34 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.34  |-  ( ( ( ps  ->  ch )  /\  ( ph  ->  ps ) )  ->  ( ph  ->  ch ) )

Proof of Theorem pm3.34
StepHypRef Expression
1 imim2 49 . 2  |-  ( ( ps  ->  ch )  ->  ( ( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
21imp 418 1  |-  ( ( ( ps  ->  ch )  /\  ( ph  ->  ps ) )  ->  ( ph  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  algcvgblem  12743  a9e2ndeqALT  27988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator