MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.4 Unicode version

Theorem pm3.4 546
Description: Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.)
Assertion
Ref Expression
pm3.4  |-  ( (
ph  /\  ps )  ->  ( ph  ->  ps ) )

Proof of Theorem pm3.4
StepHypRef Expression
1 simpr 449 . 2  |-  ( (
ph  /\  ps )  ->  ps )
21a1d 24 1  |-  ( (
ph  /\  ps )  ->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  sbequ1  1890
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator