MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.42 Unicode version

Theorem pm3.42 545
Description: Theorem *3.42 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.42  |-  ( ( ps  ->  ch )  ->  ( ( ph  /\  ps )  ->  ch )
)

Proof of Theorem pm3.42
StepHypRef Expression
1 simpr 449 . 2  |-  ( (
ph  /\  ps )  ->  ps )
21imim1i 56 1  |-  ( ( ps  ->  ch )  ->  ( ( ph  /\  ps )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  bnj1101  27849
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator