MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.43 Unicode version

Theorem pm3.43 835
Description: Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.43  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  /\  ch ) ) )

Proof of Theorem pm3.43
StepHypRef Expression
1 pm3.43i 444 . 2  |-  ( (
ph  ->  ps )  -> 
( ( ph  ->  ch )  ->  ( ph  ->  ( ps  /\  ch ) ) ) )
21imp 420 1  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360
This theorem is referenced by:  jcab  836  eqvinc  2846  pgapspf2  25385  jm2.18  26413  jm2.15nn0  26428  jm2.16nn0  26429  bnj1110  28024
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator