MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.24 Structured version   Unicode version

Theorem pm4.24 625
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.24  |-  ( ph  <->  (
ph  /\  ph ) )

Proof of Theorem pm4.24
StepHypRef Expression
1 id 20 . 2  |-  ( ph  ->  ph )
21pm4.71i 614 1  |-  ( ph  <->  (
ph  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359
This theorem is referenced by:  anidm  626  anabsan  787  nic-ax  1447  euind  3114  reuind  3130  disjprg  4201  wesn  4942  sqrlem5  12045  crngunit  15760  lmodvscl  15960  isclo2  17145  vitalilem1  19493  prtlem16  26710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator