MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.56 Unicode version

Theorem pm4.56 483
Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.56  |-  ( ( -.  ph  /\  -.  ps ) 
<->  -.  ( ph  \/  ps ) )

Proof of Theorem pm4.56
StepHypRef Expression
1 ioran 478 . 2  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
21bicomi 195 1  |-  ( ( -.  ph  /\  -.  ps ) 
<->  -.  ( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178    \/ wo 359    /\ wa 360
This theorem is referenced by:  oran  484  neanior  2532  ordtri3  4427  ssxr  8887  isirred2  15477  aaliou3lem9  19724  jm2.26lem3  26493  wopprc  26522  dalawlem13  29339  cdleme22b  29797
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362
  Copyright terms: Public domain W3C validator