MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.61 Unicode version

Theorem pm4.61 417
Description: Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.61  |-  ( -.  ( ph  ->  ps ) 
<->  ( ph  /\  -.  ps ) )

Proof of Theorem pm4.61
StepHypRef Expression
1 annim 416 . 2  |-  ( (
ph  /\  -.  ps )  <->  -.  ( ph  ->  ps ) )
21bicomi 195 1  |-  ( -.  ( ph  ->  ps ) 
<->  ( ph  /\  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360
This theorem is referenced by:  pm4.65  418  npss  3247  difin  3367  isf32lem2  7934  fphpd  26252  bnj1253  28080
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator