MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.62 Unicode version

Theorem pm4.62 409
Description: Theorem *4.62 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.62  |-  ( (
ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) )

Proof of Theorem pm4.62
StepHypRef Expression
1 imor 402 1  |-  ( (
ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358
This theorem is referenced by:  ianor  475  rb-bijust  1523  frxp  6442  bnj1174  29124  cdleme0nex  30818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360
  Copyright terms: Public domain W3C validator