MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.62 Unicode version

Theorem pm4.62 410
Description: Theorem *4.62 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.62  |-  ( (
ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) )

Proof of Theorem pm4.62
StepHypRef Expression
1 imor 403 1  |-  ( (
ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359
This theorem is referenced by:  ianor  476  rb-bijust  1509  frxp  6186  ballotlem2  23040  bnj1174  28300  cdleme0nex  29746
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator