MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.76 Unicode version

Theorem pm4.76 836
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  /\  ch ) ) )

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 833 . 2  |-  ( (
ph  ->  ( ps  /\  ch ) )  <->  ( ( ph  ->  ps )  /\  ( ph  ->  ch )
) )
21bicomi 193 1  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358
This theorem is referenced by:  fun11  5331  axgroth4  8470  dford4  27225
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator