MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.77 Unicode version

Theorem pm4.77 762
Description: Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.77  |-  ( ( ( ps  ->  ph )  /\  ( ch  ->  ph )
)  <->  ( ( ps  \/  ch )  ->  ph ) )

Proof of Theorem pm4.77
StepHypRef Expression
1 jaob 758 . 2  |-  ( ( ( ps  \/  ch )  ->  ph )  <->  ( ( ps  ->  ph )  /\  ( ch  ->  ph ) ) )
21bicomi 193 1  |-  ( ( ( ps  ->  ph )  /\  ( ch  ->  ph )
)  <->  ( ( ps  \/  ch )  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator