MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.36 Structured version   Unicode version

Theorem pm5.36 850
Description: Theorem *5.36 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.36  |-  ( (
ph  /\  ( ph  <->  ps ) )  <->  ( ps  /\  ( ph  <->  ps )
) )

Proof of Theorem pm5.36
StepHypRef Expression
1 id 20 . 2  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
21pm5.32ri 620 1  |-  ( (
ph  /\  ( ph  <->  ps ) )  <->  ( ps  /\  ( ph  <->  ps )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator