MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.501 Unicode version

Theorem pm5.501 330
Description: Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.501  |-  ( ph  ->  ( ps  <->  ( ph  <->  ps ) ) )

Proof of Theorem pm5.501
StepHypRef Expression
1 pm5.1im 229 . 2  |-  ( ph  ->  ( ps  ->  ( ph 
<->  ps ) ) )
2 bi1 178 . . 3  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
32com12 27 . 2  |-  ( ph  ->  ( ( ph  <->  ps )  ->  ps ) )
41, 3impbid 183 1  |-  ( ph  ->  ( ps  <->  ( ph  <->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176
This theorem is referenced by:  ibib  331  ibibr  332  nbn2  334  pm5.18  345  biass  348  pm5.1  830  sadadd2lem2  12657  isclo  16840  nrmmetd  18113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177
  Copyright terms: Public domain W3C validator