MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.62 Unicode version

Theorem pm5.62 889
Description: Theorem *5.62 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 21-Jun-2005.)
Assertion
Ref Expression
pm5.62  |-  ( ( ( ph  /\  ps )  \/  -.  ps )  <->  (
ph  \/  -.  ps )
)

Proof of Theorem pm5.62
StepHypRef Expression
1 exmid 404 . 2  |-  ( ps  \/  -.  ps )
2 ordir 835 . 2  |-  ( ( ( ph  /\  ps )  \/  -.  ps )  <->  ( ( ph  \/  -.  ps )  /\  ( ps  \/  -.  ps )
) )
31, 2mpbiran2 885 1  |-  ( ( ( ph  /\  ps )  \/  -.  ps )  <->  (
ph  \/  -.  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator