Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Structured version   Unicode version

Theorem pm54.43 7918
 Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2. Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 7886), so that their means, in our notation, which is the same as by pm54.43lem 7917. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.) Theorem pm110.643 8088 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43

Proof of Theorem pm54.43
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6760 . . . . . . . 8
21elexi 2971 . . . . . . 7
32ensn1 7200 . . . . . 6
43ensymi 7186 . . . . 5
5 entr 7188 . . . . 5
64, 5mpan2 654 . . . 4
71onirri 4717 . . . . . . 7
8 disjsn 3892 . . . . . . 7
97, 8mpbir 202 . . . . . 6
10 unen 7218 . . . . . 6
119, 10mpanr2 667 . . . . 5
1211ex 425 . . . 4
136, 12sylan2 462 . . 3
14 df-2o 6754 . . . . 5
15 df-suc 4616 . . . . 5
1614, 15eqtri 2462 . . . 4
1716breq2i 4245 . . 3
1813, 17syl6ibr 220 . 2
19 en1 7203 . . 3
20 en1 7203 . . 3
21 unidm 3476 . . . . . . . . . . . . . 14
22 sneq 3849 . . . . . . . . . . . . . . 15
2322uneq2d 3487 . . . . . . . . . . . . . 14
2421, 23syl5reqr 2489 . . . . . . . . . . . . 13
25 vex 2965 . . . . . . . . . . . . . . 15
2625ensn1 7200 . . . . . . . . . . . . . 14
27 1sdom2 7336 . . . . . . . . . . . . . 14
28 ensdomtr 7272 . . . . . . . . . . . . . 14
2926, 27, 28mp2an 655 . . . . . . . . . . . . 13
3024, 29syl6eqbr 4274 . . . . . . . . . . . 12
31 sdomnen 7165 . . . . . . . . . . . 12
3230, 31syl 16 . . . . . . . . . . 11
3332necon2ai 2655 . . . . . . . . . 10
34 disjsn2 3893 . . . . . . . . . 10
3533, 34syl 16 . . . . . . . . 9
3635a1i 11 . . . . . . . 8
37 uneq12 3482 . . . . . . . . 9
3837breq1d 4247 . . . . . . . 8
39 ineq12 3523 . . . . . . . . 9
4039eqeq1d 2450 . . . . . . . 8
4136, 38, 403imtr4d 261 . . . . . . 7
4241ex 425 . . . . . 6
4342exlimdv 1647 . . . . 5
4443exlimiv 1645 . . . 4
4544imp 420 . . 3
4619, 20, 45syl2anb 467 . 2
4718, 46impbid 185 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 178   wa 360  wex 1551   wceq 1653   wcel 1727   wne 2605   cun 3304   cin 3305  c0 3613  csn 3838   class class class wbr 4237  con0 4610   csuc 4612  c1o 6746  c2o 6747   cen 7135   csdm 7137 This theorem is referenced by:  pr2nelem  7919  pm110.643  8088  isprm2lem  13117 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-1o 6753  df-2o 6754  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141
 Copyright terms: Public domain W3C validator