MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Unicode version

Theorem pm54.43 7678
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 7646), so that their  A  e.  1 means, in our notation,  A  e.  { x  |  (
card `  x )  =  1o } which is the same as  A  ~~  1o by pm54.43lem 7677. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem pm110.643 7848 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)

Assertion
Ref Expression
pm54.43  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )

Proof of Theorem pm54.43
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6528 . . . . . . . 8  |-  1o  e.  On
21elexi 2831 . . . . . . 7  |-  1o  e.  _V
32ensn1 6968 . . . . . 6  |-  { 1o }  ~~  1o
43ensymi 6954 . . . . 5  |-  1o  ~~  { 1o }
5 entr 6956 . . . . 5  |-  ( ( B  ~~  1o  /\  1o  ~~  { 1o }
)  ->  B  ~~  { 1o } )
64, 5mpan2 652 . . . 4  |-  ( B 
~~  1o  ->  B  ~~  { 1o } )
71onirri 4536 . . . . . . 7  |-  -.  1o  e.  1o
8 disjsn 3727 . . . . . . 7  |-  ( ( 1o  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  1o )
97, 8mpbir 200 . . . . . 6  |-  ( 1o 
i^i  { 1o } )  =  (/)
10 unen 6986 . . . . . 6  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  (
( A  i^i  B
)  =  (/)  /\  ( 1o  i^i  { 1o }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
119, 10mpanr2 665 . . . . 5  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) )
1211ex 423 . . . 4  |-  ( ( A  ~~  1o  /\  B  ~~  { 1o }
)  ->  ( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) ) )
136, 12sylan2 460 . . 3  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) ) )
14 df-2o 6522 . . . . 5  |-  2o  =  suc  1o
15 df-suc 4435 . . . . 5  |-  suc  1o  =  ( 1o  u.  { 1o } )
1614, 15eqtri 2336 . . . 4  |-  2o  =  ( 1o  u.  { 1o } )
1716breq2i 4068 . . 3  |-  ( ( A  u.  B ) 
~~  2o  <->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
1813, 17syl6ibr 218 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  2o ) )
19 en1 6971 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
20 en1 6971 . . 3  |-  ( B 
~~  1o  <->  E. y  B  =  { y } )
21 unidm 3352 . . . . . . . . . . . . . 14  |-  ( { x }  u.  {
x } )  =  { x }
22 sneq 3685 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  { x }  =  { y } )
2322uneq2d 3363 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( { x }  u.  { x } )  =  ( { x }  u.  { y } ) )
2421, 23syl5reqr 2363 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( { x }  u.  { y } )  =  { x } )
25 vex 2825 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
2625ensn1 6968 . . . . . . . . . . . . . 14  |-  { x }  ~~  1o
27 1sdom2 7104 . . . . . . . . . . . . . 14  |-  1o  ~<  2o
28 ensdomtr 7040 . . . . . . . . . . . . . 14  |-  ( ( { x }  ~~  1o  /\  1o  ~<  2o )  ->  { x }  ~<  2o )
2926, 27, 28mp2an 653 . . . . . . . . . . . . 13  |-  { x }  ~<  2o
3024, 29syl6eqbr 4097 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( { x }  u.  { y } )  ~<  2o )
31 sdomnen 6933 . . . . . . . . . . . 12  |-  ( ( { x }  u.  { y } )  ~<  2o  ->  -.  ( {
x }  u.  {
y } )  ~~  2o )
3230, 31syl 15 . . . . . . . . . . 11  |-  ( x  =  y  ->  -.  ( { x }  u.  { y } )  ~~  2o )
3332necon2ai 2524 . . . . . . . . . 10  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  x  =/=  y
)
34 disjsn2 3728 . . . . . . . . . 10  |-  ( x  =/=  y  ->  ( { x }  i^i  { y } )  =  (/) )
3533, 34syl 15 . . . . . . . . 9  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) )
3635a1i 10 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) ) )
37 uneq12 3358 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  u.  B
)  =  ( { x }  u.  {
y } ) )
3837breq1d 4070 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  <->  ( { x }  u.  { y } )  ~~  2o ) )
39 ineq12 3399 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  i^i  B
)  =  ( { x }  i^i  {
y } ) )
4039eqeq1d 2324 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  i^i  B )  =  (/)  <->  ( {
x }  i^i  {
y } )  =  (/) ) )
4136, 38, 403imtr4d 259 . . . . . . 7  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4241ex 423 . . . . . 6  |-  ( A  =  { x }  ->  ( B  =  {
y }  ->  (
( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4342exlimdv 1627 . . . . 5  |-  ( A  =  { x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4443exlimiv 1625 . . . 4  |-  ( E. x  A  =  {
x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4544imp 418 . . 3  |-  ( ( E. x  A  =  { x }  /\  E. y  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4619, 20, 45syl2anb 465 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4718, 46impbid 183 1  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1532    = wceq 1633    e. wcel 1701    =/= wne 2479    u. cun 3184    i^i cin 3185   (/)c0 3489   {csn 3674   class class class wbr 4060   Oncon0 4429   suc csuc 4431   1oc1o 6514   2oc2o 6515    ~~ cen 6903    ~< csdm 6905
This theorem is referenced by:  pr2nelem  7679  pm110.643  7848  isprm2lem  12812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-1o 6521  df-2o 6522  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909
  Copyright terms: Public domain W3C validator