Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap0 Unicode version

Theorem pmap0 30293
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmap0.z  |-  .0.  =  ( 0. `  K )
pmap0.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmap0  |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  (/) )

Proof of Theorem pmap0
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2430 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 pmap0.z . . . 4  |-  .0.  =  ( 0. `  K )
31, 2atl0cl 29832 . . 3  |-  ( K  e.  AtLat  ->  .0.  e.  ( Base `  K )
)
4 eqid 2430 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
5 eqid 2430 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
6 pmap0.m . . . 4  |-  M  =  ( pmap `  K
)
71, 4, 5, 6pmapval 30285 . . 3  |-  ( ( K  e.  AtLat  /\  .0.  e.  ( Base `  K
) )  ->  ( M `  .0.  )  =  { a  e.  (
Atoms `  K )  |  a ( le `  K )  .0.  }
)
83, 7mpdan 650 . 2  |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  {
a  e.  ( Atoms `  K )  |  a ( le `  K
)  .0.  } )
94, 2, 5atnle0 29838 . . . . 5  |-  ( ( K  e.  AtLat  /\  a  e.  ( Atoms `  K )
)  ->  -.  a
( le `  K
)  .0.  )
109nrexdv 2796 . . . 4  |-  ( K  e.  AtLat  ->  -.  E. a  e.  ( Atoms `  K )
a ( le `  K )  .0.  )
11 rabn0 3634 . . . 4  |-  ( { a  e.  ( Atoms `  K )  |  a ( le `  K
)  .0.  }  =/=  (/)  <->  E. a  e.  ( Atoms `  K ) a ( le `  K )  .0.  )
1210, 11sylnibr 297 . . 3  |-  ( K  e.  AtLat  ->  -.  { a  e.  ( Atoms `  K
)  |  a ( le `  K )  .0.  }  =/=  (/) )
13 nne 2597 . . 3  |-  ( -. 
{ a  e.  (
Atoms `  K )  |  a ( le `  K )  .0.  }  =/=  (/)  <->  { a  e.  (
Atoms `  K )  |  a ( le `  K )  .0.  }  =  (/) )
1412, 13sylib 189 . 2  |-  ( K  e.  AtLat  ->  { a  e.  ( Atoms `  K )  |  a ( le
`  K )  .0. 
}  =  (/) )
158, 14eqtrd 2462 1  |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2593   E.wrex 2693   {crab 2696   (/)c0 3615   class class class wbr 4199   ` cfv 5440   Basecbs 13452   lecple 13519   0.cp0 14449   Atomscatm 29792   AtLatcal 29793   pmapcpmap 30025
This theorem is referenced by:  pmapeq0  30294  pmapjat1  30381  pol1N  30438  pnonsingN  30461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-poset 14386  df-plt 14398  df-lat 14458  df-covers 29795  df-ats 29796  df-atl 29827  df-pmap 30032
  Copyright terms: Public domain W3C validator