Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap0 Unicode version

Theorem pmap0 29222
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmap0.z  |-  .0.  =  ( 0. `  K )
pmap0.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmap0  |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  (/) )
Dummy variable  a is distinct from all other variables.

Proof of Theorem pmap0
StepHypRef Expression
1 eqid 2285 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 pmap0.z . . . 4  |-  .0.  =  ( 0. `  K )
31, 2atl0cl 28761 . . 3  |-  ( K  e.  AtLat  ->  .0.  e.  ( Base `  K )
)
4 eqid 2285 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
5 eqid 2285 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
6 pmap0.m . . . 4  |-  M  =  ( pmap `  K
)
71, 4, 5, 6pmapval 29214 . . 3  |-  ( ( K  e.  AtLat  /\  .0.  e.  ( Base `  K
) )  ->  ( M `  .0.  )  =  { a  e.  (
Atoms `  K )  |  a ( le `  K )  .0.  }
)
83, 7mpdan 651 . 2  |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  {
a  e.  ( Atoms `  K )  |  a ( le `  K
)  .0.  } )
94, 2, 5atnle0 28767 . . . . 5  |-  ( ( K  e.  AtLat  /\  a  e.  ( Atoms `  K )
)  ->  -.  a
( le `  K
)  .0.  )
109nrexdv 2648 . . . 4  |-  ( K  e.  AtLat  ->  -.  E. a  e.  ( Atoms `  K )
a ( le `  K )  .0.  )
11 rabn0 3476 . . . 4  |-  ( { a  e.  ( Atoms `  K )  |  a ( le `  K
)  .0.  }  =/=  (/)  <->  E. a  e.  ( Atoms `  K ) a ( le `  K )  .0.  )
1210, 11sylnibr 298 . . 3  |-  ( K  e.  AtLat  ->  -.  { a  e.  ( Atoms `  K
)  |  a ( le `  K )  .0.  }  =/=  (/) )
13 nne 2452 . . 3  |-  ( -. 
{ a  e.  (
Atoms `  K )  |  a ( le `  K )  .0.  }  =/=  (/)  <->  { a  e.  (
Atoms `  K )  |  a ( le `  K )  .0.  }  =  (/) )
1412, 13sylib 190 . 2  |-  ( K  e.  AtLat  ->  { a  e.  ( Atoms `  K )  |  a ( le
`  K )  .0. 
}  =  (/) )
158, 14eqtrd 2317 1  |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    = wceq 1624    e. wcel 1685    =/= wne 2448   E.wrex 2546   {crab 2549   (/)c0 3457   class class class wbr 4025   ` cfv 5222   Basecbs 13143   lecple 13210   0.cp0 14138   Atomscatm 28721   AtLatcal 28722   pmapcpmap 28954
This theorem is referenced by:  pmapeq0  29223  pmapjat1  29310  pol1N  29367  pnonsingN  29390
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-poset 14075  df-plt 14087  df-lat 14147  df-covers 28724  df-ats 28725  df-atl 28756  df-pmap 28961
  Copyright terms: Public domain W3C validator