Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap1N Unicode version

Theorem pmap1N 28757
Description: Value of the projective map of a Hilbert lattice at lattice unit. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmap1.u  |-  .1.  =  ( 1. `  K )
pmap1.a  |-  A  =  ( Atoms `  K )
pmap1.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmap1N  |-  ( K  e.  OP  ->  ( M `  .1.  )  =  A )

Proof of Theorem pmap1N
StepHypRef Expression
1 eqid 2253 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 pmap1.u . . . 4  |-  .1.  =  ( 1. `  K )
31, 2op1cl 28176 . . 3  |-  ( K  e.  OP  ->  .1.  e.  ( Base `  K
) )
4 eqid 2253 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
5 pmap1.a . . . 4  |-  A  =  ( Atoms `  K )
6 pmap1.m . . . 4  |-  M  =  ( pmap `  K
)
71, 4, 5, 6pmapval 28747 . . 3  |-  ( ( K  e.  OP  /\  .1.  e.  ( Base `  K
) )  ->  ( M `  .1.  )  =  { p  e.  A  |  p ( le `  K )  .1.  }
)
83, 7mpdan 652 . 2  |-  ( K  e.  OP  ->  ( M `  .1.  )  =  { p  e.  A  |  p ( le `  K )  .1.  }
)
91, 5atbase 28280 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
101, 4, 2ople1 28182 . . . . 5  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  ->  p ( le `  K )  .1.  )
119, 10sylan2 462 . . . 4  |-  ( ( K  e.  OP  /\  p  e.  A )  ->  p ( le `  K )  .1.  )
1211ralrimiva 2588 . . 3  |-  ( K  e.  OP  ->  A. p  e.  A  p ( le `  K )  .1.  )
13 rabid2 2676 . . 3  |-  ( A  =  { p  e.  A  |  p ( le `  K )  .1.  }  <->  A. p  e.  A  p ( le `  K )  .1.  )
1412, 13sylibr 205 . 2  |-  ( K  e.  OP  ->  A  =  { p  e.  A  |  p ( le `  K )  .1.  }
)
158, 14eqtr4d 2288 1  |-  ( K  e.  OP  ->  ( M `  .1.  )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   A.wral 2509   {crab 2512   class class class wbr 3920   ` cfv 4592   Basecbs 13022   lecple 13089   1.cp1 13988   OPcops 28163   Atomscatm 28254   pmapcpmap 28487
This theorem is referenced by:  pmapglb2N  28761  pmapglb2xN  28762
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-iota 6143  df-undef 6182  df-riota 6190  df-lub 13952  df-p1 13990  df-oposet 28167  df-ats 28258  df-pmap 28494
  Copyright terms: Public domain W3C validator