Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap1N Unicode version

Theorem pmap1N 30578
Description: Value of the projective map of a Hilbert lattice at lattice unit. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmap1.u  |-  .1.  =  ( 1. `  K )
pmap1.a  |-  A  =  ( Atoms `  K )
pmap1.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmap1N  |-  ( K  e.  OP  ->  ( M `  .1.  )  =  A )

Proof of Theorem pmap1N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 pmap1.u . . . 4  |-  .1.  =  ( 1. `  K )
31, 2op1cl 29997 . . 3  |-  ( K  e.  OP  ->  .1.  e.  ( Base `  K
) )
4 eqid 2296 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
5 pmap1.a . . . 4  |-  A  =  ( Atoms `  K )
6 pmap1.m . . . 4  |-  M  =  ( pmap `  K
)
71, 4, 5, 6pmapval 30568 . . 3  |-  ( ( K  e.  OP  /\  .1.  e.  ( Base `  K
) )  ->  ( M `  .1.  )  =  { p  e.  A  |  p ( le `  K )  .1.  }
)
83, 7mpdan 649 . 2  |-  ( K  e.  OP  ->  ( M `  .1.  )  =  { p  e.  A  |  p ( le `  K )  .1.  }
)
91, 5atbase 30101 . . . . 5  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
101, 4, 2ople1 30003 . . . . 5  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  ->  p ( le `  K )  .1.  )
119, 10sylan2 460 . . . 4  |-  ( ( K  e.  OP  /\  p  e.  A )  ->  p ( le `  K )  .1.  )
1211ralrimiva 2639 . . 3  |-  ( K  e.  OP  ->  A. p  e.  A  p ( le `  K )  .1.  )
13 rabid2 2730 . . 3  |-  ( A  =  { p  e.  A  |  p ( le `  K )  .1.  }  <->  A. p  e.  A  p ( le `  K )  .1.  )
1412, 13sylibr 203 . 2  |-  ( K  e.  OP  ->  A  =  { p  e.  A  |  p ( le `  K )  .1.  }
)
158, 14eqtr4d 2331 1  |-  ( K  e.  OP  ->  ( M `  .1.  )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   class class class wbr 4039   ` cfv 5271   Basecbs 13164   lecple 13231   1.cp1 14160   OPcops 29984   Atomscatm 30075   pmapcpmap 30308
This theorem is referenced by:  pmapglb2N  30582  pmapglb2xN  30583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-undef 6314  df-riota 6320  df-lub 14124  df-p1 14162  df-oposet 29988  df-ats 30079  df-pmap 30315
  Copyright terms: Public domain W3C validator