Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb Unicode version

Theorem pmapglb 29959
Description: The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b  |-  B  =  ( Base `  K
)
pmapglb.g  |-  G  =  ( glb `  K
)
pmapglb.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglb  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  = 
|^|_ x  e.  S  ( M `  x ) )
Distinct variable groups:    x, B    x, K    x, S
Allowed substitution hints:    G( x)    M( x)

Proof of Theorem pmapglb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-rex 2549 . . . . . . 7  |-  ( E. x  e.  S  y  =  x  <->  E. x
( x  e.  S  /\  y  =  x
) )
2 equcom 1647 . . . . . . . . . . 11  |-  ( y  =  x  <->  x  =  y )
32anbi2i 675 . . . . . . . . . 10  |-  ( ( x  e.  S  /\  y  =  x )  <->  ( x  e.  S  /\  x  =  y )
)
4 ancom 437 . . . . . . . . . 10  |-  ( ( x  e.  S  /\  x  =  y )  <->  ( x  =  y  /\  x  e.  S )
)
53, 4bitri 240 . . . . . . . . 9  |-  ( ( x  e.  S  /\  y  =  x )  <->  ( x  =  y  /\  x  e.  S )
)
65exbii 1569 . . . . . . . 8  |-  ( E. x ( x  e.  S  /\  y  =  x )  <->  E. x
( x  =  y  /\  x  e.  S
) )
7 vex 2791 . . . . . . . . 9  |-  y  e. 
_V
8 eleq1 2343 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  S  <->  y  e.  S ) )
97, 8ceqsexv 2823 . . . . . . . 8  |-  ( E. x ( x  =  y  /\  x  e.  S )  <->  y  e.  S )
106, 9bitri 240 . . . . . . 7  |-  ( E. x ( x  e.  S  /\  y  =  x )  <->  y  e.  S )
111, 10bitri 240 . . . . . 6  |-  ( E. x  e.  S  y  =  x  <->  y  e.  S )
1211abbii 2395 . . . . 5  |-  { y  |  E. x  e.  S  y  =  x }  =  { y  |  y  e.  S }
13 abid2 2400 . . . . 5  |-  { y  |  y  e.  S }  =  S
1412, 13eqtr2i 2304 . . . 4  |-  S  =  { y  |  E. x  e.  S  y  =  x }
1514fveq2i 5528 . . 3  |-  ( G `
 S )  =  ( G `  {
y  |  E. x  e.  S  y  =  x } )
1615fveq2i 5528 . 2  |-  ( M `
 ( G `  S ) )  =  ( M `  ( G `  { y  |  E. x  e.  S  y  =  x }
) )
17 dfss3 3170 . . 3  |-  ( S 
C_  B  <->  A. x  e.  S  x  e.  B )
18 pmapglb.b . . . 4  |-  B  =  ( Base `  K
)
19 pmapglb.g . . . 4  |-  G  =  ( glb `  K
)
20 pmapglb.m . . . 4  |-  M  =  ( pmap `  K
)
2118, 19, 20pmapglbx 29958 . . 3  |-  ( ( K  e.  HL  /\  A. x  e.  S  x  e.  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. x  e.  S  y  =  x } ) )  =  |^|_ x  e.  S  ( M `  x ) )
2217, 21syl3an2b 1219 . 2  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. x  e.  S  y  =  x } ) )  =  |^|_ x  e.  S  ( M `  x ) )
2316, 22syl5eq 2327 1  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  = 
|^|_ x  e.  S  ( M `  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   |^|_ciin 3906   ` cfv 5255   Basecbs 13148   glbcglb 14077   HLchlt 29540   pmapcpmap 29686
This theorem is referenced by:  pmapglb2N  29960  pmapmeet  29962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-glb 14109  df-join 14110  df-meet 14111  df-lat 14152  df-clat 14214  df-ats 29457  df-hlat 29541  df-pmap 29693
  Copyright terms: Public domain W3C validator