Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Unicode version

Theorem pmapglb2N 30407
Description: The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows  S  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b  |-  B  =  ( Base `  K
)
pmapglb2.g  |-  G  =  ( glb `  K
)
pmapglb2.a  |-  A  =  ( Atoms `  K )
pmapglb2.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglb2N  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( M `  ( G `  S )
)  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) )
Distinct variable groups:    x, A    x, B    x, K    x, S
Allowed substitution hints:    G( x)    M( x)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 29999 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
2 pmapglb2.g . . . . . . . 8  |-  G  =  ( glb `  K
)
3 eqid 2435 . . . . . . . 8  |-  ( 1.
`  K )  =  ( 1. `  K
)
42, 3glb0N 29830 . . . . . . 7  |-  ( K  e.  OP  ->  ( G `  (/) )  =  ( 1. `  K
) )
54fveq2d 5723 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  ( M `  ( 1. `  K ) ) )
6 pmapglb2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
7 pmapglb2.m . . . . . . 7  |-  M  =  ( pmap `  K
)
83, 6, 7pmap1N 30403 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( 1. `  K ) )  =  A )
95, 8eqtrd 2467 . . . . 5  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  A )
101, 9syl 16 . . . 4  |-  ( K  e.  HL  ->  ( M `  ( G `  (/) ) )  =  A )
11 fveq2 5719 . . . . . 6  |-  ( S  =  (/)  ->  ( G `
 S )  =  ( G `  (/) ) )
1211fveq2d 5723 . . . . 5  |-  ( S  =  (/)  ->  ( M `
 ( G `  S ) )  =  ( M `  ( G `  (/) ) ) )
13 riin0 4156 . . . . 5  |-  ( S  =  (/)  ->  ( A  i^i  |^|_ x  e.  S  ( M `  x ) )  =  A )
1412, 13eqeq12d 2449 . . . 4  |-  ( S  =  (/)  ->  ( ( M `  ( G `
 S ) )  =  ( A  i^i  |^|_
x  e.  S  ( M `  x ) )  <->  ( M `  ( G `  (/) ) )  =  A ) )
1510, 14syl5ibrcom 214 . . 3  |-  ( K  e.  HL  ->  ( S  =  (/)  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) ) ) )
1615adantr 452 . 2  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( S  =  (/)  ->  ( M `  ( G `  S )
)  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) ) )
17 pmapglb2.b . . . . 5  |-  B  =  ( Base `  K
)
1817, 2, 7pmapglb 30406 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  = 
|^|_ x  e.  S  ( M `  x ) )
19 simpr 448 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  x  e.  S )
20 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  K  e.  HL )
21 ssel2 3335 . . . . . . . . . . . . 13  |-  ( ( S  C_  B  /\  x  e.  S )  ->  x  e.  B )
2221adantll 695 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  x  e.  B )
2317, 6, 7pmapssat 30395 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  x  e.  B )  ->  ( M `  x
)  C_  A )
2420, 22, 23syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  ( M `  x )  C_  A
)
2519, 24jca 519 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  ( x  e.  S  /\  ( M `  x )  C_  A ) )
2625ex 424 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( x  e.  S  ->  ( x  e.  S  /\  ( M `  x
)  C_  A )
) )
2726eximdv 1632 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( E. x  x  e.  S  ->  E. x
( x  e.  S  /\  ( M `  x
)  C_  A )
) )
28 n0 3629 . . . . . . . 8  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
29 df-rex 2703 . . . . . . . 8  |-  ( E. x  e.  S  ( M `  x ) 
C_  A  <->  E. x
( x  e.  S  /\  ( M `  x
)  C_  A )
)
3027, 28, 293imtr4g 262 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( S  =/=  (/)  ->  E. x  e.  S  ( M `  x )  C_  A
) )
31303impia 1150 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  E. x  e.  S  ( M `  x )  C_  A
)
32 iinss 4134 . . . . . 6  |-  ( E. x  e.  S  ( M `  x ) 
C_  A  ->  |^|_ x  e.  S  ( M `  x )  C_  A
)
3331, 32syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  |^|_ x  e.  S  ( M `  x )  C_  A
)
34 sseqin2 3552 . . . . 5  |-  ( |^|_ x  e.  S  ( M `
 x )  C_  A 
<->  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) )  =  |^|_ x  e.  S  ( M `  x ) )
3533, 34sylib 189 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( A  i^i  |^|_ x  e.  S  ( M `  x ) )  =  |^|_ x  e.  S  ( M `  x ) )
3618, 35eqtr4d 2470 . . 3  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) ) )
37363expia 1155 . 2  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( S  =/=  (/)  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) ) ) )
3816, 37pm2.61dne 2675 1  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( M `  ( G `  S )
)  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    i^i cin 3311    C_ wss 3312   (/)c0 3620   |^|_ciin 4086   ` cfv 5445   Basecbs 13457   glbcglb 14388   1.cp1 14455   OPcops 29809   Atomscatm 29900   HLchlt 29987   pmapcpmap 30133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-poset 14391  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-ats 29904  df-hlat 29988  df-pmap 30140
  Copyright terms: Public domain W3C validator