Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb2N Unicode version

Theorem pmapglb2N 29090
Description: The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows  S  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapglb2.b  |-  B  =  ( Base `  K
)
pmapglb2.g  |-  G  =  ( glb `  K
)
pmapglb2.a  |-  A  =  ( Atoms `  K )
pmapglb2.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglb2N  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( M `  ( G `  S )
)  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) )
Distinct variable groups:    x, A    x, B    x, K    x, S
Allowed substitution hints:    G( x)    M( x)

Proof of Theorem pmapglb2N
StepHypRef Expression
1 hlop 28682 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
2 pmapglb2.g . . . . . . . 8  |-  G  =  ( glb `  K
)
3 eqid 2256 . . . . . . . 8  |-  ( 1.
`  K )  =  ( 1. `  K
)
42, 3glb0N 28513 . . . . . . 7  |-  ( K  e.  OP  ->  ( G `  (/) )  =  ( 1. `  K
) )
54fveq2d 5427 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  ( M `  ( 1. `  K ) ) )
6 pmapglb2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
7 pmapglb2.m . . . . . . 7  |-  M  =  ( pmap `  K
)
83, 6, 7pmap1N 29086 . . . . . 6  |-  ( K  e.  OP  ->  ( M `  ( 1. `  K ) )  =  A )
95, 8eqtrd 2288 . . . . 5  |-  ( K  e.  OP  ->  ( M `  ( G `  (/) ) )  =  A )
101, 9syl 17 . . . 4  |-  ( K  e.  HL  ->  ( M `  ( G `  (/) ) )  =  A )
11 fveq2 5423 . . . . . 6  |-  ( S  =  (/)  ->  ( G `
 S )  =  ( G `  (/) ) )
1211fveq2d 5427 . . . . 5  |-  ( S  =  (/)  ->  ( M `
 ( G `  S ) )  =  ( M `  ( G `  (/) ) ) )
13 riin0 3916 . . . . 5  |-  ( S  =  (/)  ->  ( A  i^i  |^|_ x  e.  S  ( M `  x ) )  =  A )
1412, 13eqeq12d 2270 . . . 4  |-  ( S  =  (/)  ->  ( ( M `  ( G `
 S ) )  =  ( A  i^i  |^|_
x  e.  S  ( M `  x ) )  <->  ( M `  ( G `  (/) ) )  =  A ) )
1510, 14syl5ibrcom 215 . . 3  |-  ( K  e.  HL  ->  ( S  =  (/)  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) ) ) )
1615adantr 453 . 2  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( S  =  (/)  ->  ( M `  ( G `  S )
)  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) ) )
17 pmapglb2.b . . . . 5  |-  B  =  ( Base `  K
)
1817, 2, 7pmapglb 29089 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  = 
|^|_ x  e.  S  ( M `  x ) )
19 simpr 449 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  x  e.  S )
20 simpll 733 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  K  e.  HL )
21 ssel2 3117 . . . . . . . . . . . . 13  |-  ( ( S  C_  B  /\  x  e.  S )  ->  x  e.  B )
2221adantll 697 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  x  e.  B )
2317, 6, 7pmapssat 29078 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  x  e.  B )  ->  ( M `  x
)  C_  A )
2420, 22, 23syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  ( M `  x )  C_  A
)
2519, 24jca 520 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  S  C_  B )  /\  x  e.  S
)  ->  ( x  e.  S  /\  ( M `  x )  C_  A ) )
2625ex 425 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( x  e.  S  ->  ( x  e.  S  /\  ( M `  x
)  C_  A )
) )
2726eximdv 2019 . . . . . . . 8  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( E. x  x  e.  S  ->  E. x
( x  e.  S  /\  ( M `  x
)  C_  A )
) )
28 n0 3406 . . . . . . . 8  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
29 df-rex 2521 . . . . . . . 8  |-  ( E. x  e.  S  ( M `  x ) 
C_  A  <->  E. x
( x  e.  S  /\  ( M `  x
)  C_  A )
)
3027, 28, 293imtr4g 263 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( S  =/=  (/)  ->  E. x  e.  S  ( M `  x )  C_  A
) )
31303impia 1153 . . . . . 6  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  E. x  e.  S  ( M `  x )  C_  A
)
32 iinss 3894 . . . . . 6  |-  ( E. x  e.  S  ( M `  x ) 
C_  A  ->  |^|_ x  e.  S  ( M `  x )  C_  A
)
3331, 32syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  |^|_ x  e.  S  ( M `  x )  C_  A
)
34 sseqin2 3330 . . . . 5  |-  ( |^|_ x  e.  S  ( M `
 x )  C_  A 
<->  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) )  =  |^|_ x  e.  S  ( M `  x ) )
3533, 34sylib 190 . . . 4  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( A  i^i  |^|_ x  e.  S  ( M `  x ) )  =  |^|_ x  e.  S  ( M `  x ) )
3618, 35eqtr4d 2291 . . 3  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) ) )
37363expia 1158 . 2  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( S  =/=  (/)  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `
 x ) ) ) )
3816, 37pm2.61dne 2496 1  |-  ( ( K  e.  HL  /\  S  C_  B )  -> 
( M `  ( G `  S )
)  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517    i^i cin 3093    C_ wss 3094   (/)c0 3397   |^|_ciin 3847   ` cfv 4638   Basecbs 13075   glbcglb 14004   1.cp1 14071   OPcops 28492   Atomscatm 28583   HLchlt 28670   pmapcpmap 28816
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-ats 28587  df-hlat 28671  df-pmap 28823
  Copyright terms: Public domain W3C validator