Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmaple Unicode version

Theorem pmaple 30243
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmaple.b  |-  B  =  ( Base `  K
)
pmaple.l  |-  .<_  =  ( le `  K )
pmaple.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmaple  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )

Proof of Theorem pmaple
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 hlpos 29848 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Poset )
2 pmaple.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
3 eqid 2404 . . . . . . . . . 10  |-  ( Atoms `  K )  =  (
Atoms `  K )
42, 3atbase 29772 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
5 pmaple.l . . . . . . . . . . . . . . 15  |-  .<_  =  ( le `  K )
62, 5postr 14365 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
76exp4b 591 . . . . . . . . . . . . 13  |-  ( K  e.  Poset  ->  ( (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
873expd 1170 . . . . . . . . . . . 12  |-  ( K  e.  Poset  ->  ( p  e.  B  ->  ( X  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
98com23 74 . . . . . . . . . . 11  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( p  e.  B  ->  ( Y  e.  B  ->  ( p  .<_  X  ->  ( X  .<_  Y  ->  p 
.<_  Y ) ) ) ) ) )
109com34 79 . . . . . . . . . 10  |-  ( K  e.  Poset  ->  ( X  e.  B  ->  ( Y  e.  B  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) ) ) )
11103imp 1147 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  B  -> 
( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
124, 11syl5 30 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  ( X  .<_  Y  ->  p  .<_  Y ) ) ) )
1312com34 79 . . . . . . 7  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
p  e.  ( Atoms `  K )  ->  ( X  .<_  Y  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1413com23 74 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  (
p  e.  ( Atoms `  K )  ->  (
p  .<_  X  ->  p  .<_  Y ) ) ) )
1514ralrimdv 2755 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K )
( p  .<_  X  ->  p  .<_  Y ) ) )
161, 15syl3an1 1217 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  ( Atoms `  K ) ( p  .<_  X  ->  p 
.<_  Y ) ) )
17 ss2rab 3379 . . . 4  |-  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  <->  A. p  e.  ( Atoms `  K ) ( p 
.<_  X  ->  p  .<_  Y ) )
1816, 17syl6ibr 219 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
19 hlclat 29841 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
20 ssrab2 3388 . . . . . . . . 9  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  ( Atoms `  K )
212, 3atssbase 29773 . . . . . . . . 9  |-  ( Atoms `  K )  C_  B
2220, 21sstri 3317 . . . . . . . 8  |-  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  C_  B
23 eqid 2404 . . . . . . . . 9  |-  ( lub `  K )  =  ( lub `  K )
242, 5, 23lubss 14503 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y }  C_  B  /\  { p  e.  (
Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2522, 24mp3an2 1267 . . . . . . 7  |-  ( ( K  e.  CLat  /\  {
p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) )
2625ex 424 . . . . . 6  |-  ( K  e.  CLat  ->  ( { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
2719, 26syl 16 . . . . 5  |-  ( K  e.  HL  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
28273ad2ant1 978 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  Y } ) ) )
29 hlomcmat 29847 . . . . . . 7  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
) )
30293ad2ant1 978 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat ) )
31 simp2 958 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
322, 5, 23, 3atlatmstc 29802 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
3330, 31, 32syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)  =  X )
34 simp3 959 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
352, 5, 23, 3atlatmstc 29802 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3630, 34, 35syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  =  Y )
3733, 36breq12d 4185 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( lub `  K ) `  {
p  e.  ( Atoms `  K )  |  p 
.<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)  <->  X  .<_  Y ) )
3828, 37sylibd 206 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }  ->  X  .<_  Y )
)
3918, 38impbid 184 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  { p  e.  ( Atoms `  K )  |  p  .<_  X }  C_ 
{ p  e.  (
Atoms `  K )  |  p  .<_  Y }
) )
40 pmaple.m . . . . 5  |-  M  =  ( pmap `  K
)
412, 5, 3, 40pmapval 30239 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
42413adant3 977 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  X
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  X }
)
432, 5, 3, 40pmapval 30239 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
44433adant2 976 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( M `  Y
)  =  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
)
4542, 44sseq12d 3337 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( M `  X )  C_  ( M `  Y )  <->  { p  e.  ( Atoms `  K )  |  p 
.<_  X }  C_  { p  e.  ( Atoms `  K )  |  p  .<_  Y }
) )
4639, 45bitr4d 248 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670    C_ wss 3280   class class class wbr 4172   ` cfv 5413   Basecbs 13424   lecple 13491   Posetcpo 14352   lubclub 14354   CLatccla 14491   OMLcoml 29658   Atomscatm 29746   AtLatcal 29747   HLchlt 29833   pmapcpmap 29979
This theorem is referenced by:  pmap11  30244  hlmod1i  30338  paddunN  30409  pmapojoinN  30450  pl42N  30465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-pmap 29986
  Copyright terms: Public domain W3C validator