Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Unicode version

Theorem pmapsub 29108
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b  |-  B  =  ( Base `  K
)
pmapsub.s  |-  S  =  ( PSubSp `  K )
pmapsub.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapsub  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )

Proof of Theorem pmapsub
StepHypRef Expression
1 pmapsub.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2256 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2256 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 pmapsub.m . . 3  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapval 29097 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  =  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } )
6 breq1 3986 . . . . . . . . . . . . . 14  |-  ( c  =  p  ->  (
c ( le `  K ) X  <->  p ( le `  K ) X ) )
76elrab 2891 . . . . . . . . . . . . 13  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( p  e.  ( Atoms `  K )  /\  p ( le `  K ) X ) )
81, 3atbase 28630 . . . . . . . . . . . . . 14  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
98anim1i 554 . . . . . . . . . . . . 13  |-  ( ( p  e.  ( Atoms `  K )  /\  p
( le `  K
) X )  -> 
( p  e.  B  /\  p ( le `  K ) X ) )
107, 9sylbi 189 . . . . . . . . . . . 12  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( p  e.  B  /\  p
( le `  K
) X ) )
11 breq1 3986 . . . . . . . . . . . . . 14  |-  ( c  =  q  ->  (
c ( le `  K ) X  <->  q ( le `  K ) X ) )
1211elrab 2891 . . . . . . . . . . . . 13  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( q  e.  ( Atoms `  K )  /\  q ( le `  K ) X ) )
131, 3atbase 28630 . . . . . . . . . . . . . 14  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
1413anim1i 554 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( Atoms `  K )  /\  q
( le `  K
) X )  -> 
( q  e.  B  /\  q ( le `  K ) X ) )
1512, 14sylbi 189 . . . . . . . . . . . 12  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( q  e.  B  /\  q
( le `  K
) X ) )
1610, 15anim12i 551 . . . . . . . . . . 11  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) ) )
17 an4 800 . . . . . . . . . . 11  |-  ( ( ( p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) )  <->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1816, 17sylib 190 . . . . . . . . . 10  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1918anim2i 555 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  ( ( K  e.  Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) ) )
201, 3atbase 28630 . . . . . . . . 9  |-  ( r  e.  ( Atoms `  K
)  ->  r  e.  B )
21 eqid 2256 . . . . . . . . . . . . . . . . 17  |-  ( join `  K )  =  (
join `  K )
221, 2, 21latjle12 14116 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  <->  ( p (
join `  K )
q ) ( le
`  K ) X ) )
2322biimpd 200 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  ->  ( p
( join `  K )
q ) ( le
`  K ) X ) )
24233exp2 1174 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
p  e.  B  -> 
( q  e.  B  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  (
p ( join `  K
) q ) ( le `  K ) X ) ) ) ) )
2524imp3a 422 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2625com23 74 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( (
p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2726imp43 581 . . . . . . . . . . 11  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( ( p  e.  B  /\  q  e.  B )  /\  (
p ( le `  K ) X  /\  q ( le `  K ) X ) ) )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
2827adantr 453 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
291, 21latjcl 14104 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  q  e.  B )  ->  ( p ( join `  K ) q )  e.  B )
30293expib 1159 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( p
( join `  K )
q )  e.  B
) )
311, 2lattr 14110 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( r  e.  B  /\  ( p ( join `  K ) q )  e.  B  /\  X  e.  B ) )  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) )
32313exp2 1174 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
r  e.  B  -> 
( ( p (
join `  K )
q )  e.  B  ->  ( X  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3332com24 83 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p ( join `  K ) q )  e.  B  ->  (
r  e.  B  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3430, 33syl5d 64 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( r  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) ) ) ) )
3534imp41 579 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  B  /\  q  e.  B )
)  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3635adantlrr 704 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3728, 36mpan2d 658 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r ( le `  K ) X ) )
3819, 20, 37syl2an 465 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r
( le `  K
) X ) )
39 simpr 449 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  r  e.  ( Atoms `  K )
)
4038, 39jctild 529 . . . . . . 7  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  (
r  e.  ( Atoms `  K )  /\  r
( le `  K
) X ) ) )
41 breq1 3986 . . . . . . . 8  |-  ( c  =  r  ->  (
c ( le `  K ) X  <->  r ( le `  K ) X ) )
4241elrab 2891 . . . . . . 7  |-  ( r  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( r  e.  ( Atoms `  K )  /\  r ( le `  K ) X ) )
4340, 42syl6ibr 220 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )
4443ralrimiva 2599 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  A. r  e.  (
Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
4544ralrimivva 2608 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
46 ssrab2 3219 . . . 4  |-  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )
4745, 46jctil 525 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. q  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) )
48 pmapsub.s . . . . 5  |-  S  =  ( PSubSp `  K )
492, 21, 3, 48ispsubsp 29085 . . . 4  |-  ( K  e.  Lat  ->  ( { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S  <->  ( { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } A. q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5049adantr 453 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  e.  S  <->  ( {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X }  C_  ( Atoms `  K )  /\  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5147, 50mpbird 225 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S )
525, 51eqeltrd 2330 1  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2516   {crab 2520    C_ wss 3113   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   Basecbs 13096   lecple 13163   joincjn 14026   Latclat 14099   Atomscatm 28604   PSubSpcpsubsp 28836   pmapcpmap 28837
This theorem is referenced by:  hlmod1i  29196  polsubN  29247  pl42lem4N  29322
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-poset 14028  df-lub 14056  df-join 14058  df-lat 14100  df-ats 28608  df-psubsp 28843  df-pmap 28844
  Copyright terms: Public domain W3C validator