Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Unicode version

Theorem pmapsub 30296
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b  |-  B  =  ( Base `  K
)
pmapsub.s  |-  S  =  ( PSubSp `  K )
pmapsub.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapsub  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )

Proof of Theorem pmapsub
Dummy variables  q  p  r  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2430 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2430 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 pmapsub.m . . 3  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapval 30285 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  =  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } )
6 breq1 4202 . . . . . . . . . . . . . 14  |-  ( c  =  p  ->  (
c ( le `  K ) X  <->  p ( le `  K ) X ) )
76elrab 3079 . . . . . . . . . . . . 13  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( p  e.  ( Atoms `  K )  /\  p ( le `  K ) X ) )
81, 3atbase 29818 . . . . . . . . . . . . . 14  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
98anim1i 552 . . . . . . . . . . . . 13  |-  ( ( p  e.  ( Atoms `  K )  /\  p
( le `  K
) X )  -> 
( p  e.  B  /\  p ( le `  K ) X ) )
107, 9sylbi 188 . . . . . . . . . . . 12  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( p  e.  B  /\  p
( le `  K
) X ) )
11 breq1 4202 . . . . . . . . . . . . . 14  |-  ( c  =  q  ->  (
c ( le `  K ) X  <->  q ( le `  K ) X ) )
1211elrab 3079 . . . . . . . . . . . . 13  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( q  e.  ( Atoms `  K )  /\  q ( le `  K ) X ) )
131, 3atbase 29818 . . . . . . . . . . . . . 14  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
1413anim1i 552 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( Atoms `  K )  /\  q
( le `  K
) X )  -> 
( q  e.  B  /\  q ( le `  K ) X ) )
1512, 14sylbi 188 . . . . . . . . . . . 12  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( q  e.  B  /\  q
( le `  K
) X ) )
1610, 15anim12i 550 . . . . . . . . . . 11  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) ) )
17 an4 798 . . . . . . . . . . 11  |-  ( ( ( p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) )  <->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1816, 17sylib 189 . . . . . . . . . 10  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1918anim2i 553 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  ( ( K  e.  Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) ) )
201, 3atbase 29818 . . . . . . . . 9  |-  ( r  e.  ( Atoms `  K
)  ->  r  e.  B )
21 eqid 2430 . . . . . . . . . . . . . . . . 17  |-  ( join `  K )  =  (
join `  K )
221, 2, 21latjle12 14474 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  <->  ( p (
join `  K )
q ) ( le
`  K ) X ) )
2322biimpd 199 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  ->  ( p
( join `  K )
q ) ( le
`  K ) X ) )
24233exp2 1171 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
p  e.  B  -> 
( q  e.  B  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  (
p ( join `  K
) q ) ( le `  K ) X ) ) ) ) )
2524imp3a 421 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2625com23 74 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( (
p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2726imp43 579 . . . . . . . . . . 11  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( ( p  e.  B  /\  q  e.  B )  /\  (
p ( le `  K ) X  /\  q ( le `  K ) X ) ) )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
2827adantr 452 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
291, 21latjcl 14462 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  q  e.  B )  ->  ( p ( join `  K ) q )  e.  B )
30293expib 1156 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( p
( join `  K )
q )  e.  B
) )
311, 2lattr 14468 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( r  e.  B  /\  ( p ( join `  K ) q )  e.  B  /\  X  e.  B ) )  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) )
32313exp2 1171 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
r  e.  B  -> 
( ( p (
join `  K )
q )  e.  B  ->  ( X  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3332com24 83 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p ( join `  K ) q )  e.  B  ->  (
r  e.  B  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3430, 33syl5d 64 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( r  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) ) ) ) )
3534imp41 577 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  B  /\  q  e.  B )
)  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3635adantlrr 702 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3728, 36mpan2d 656 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r ( le `  K ) X ) )
3819, 20, 37syl2an 464 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r
( le `  K
) X ) )
39 simpr 448 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  r  e.  ( Atoms `  K )
)
4038, 39jctild 528 . . . . . . 7  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  (
r  e.  ( Atoms `  K )  /\  r
( le `  K
) X ) ) )
41 breq1 4202 . . . . . . . 8  |-  ( c  =  r  ->  (
c ( le `  K ) X  <->  r ( le `  K ) X ) )
4241elrab 3079 . . . . . . 7  |-  ( r  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( r  e.  ( Atoms `  K )  /\  r ( le `  K ) X ) )
4340, 42syl6ibr 219 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )
4443ralrimiva 2776 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  A. r  e.  (
Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
4544ralrimivva 2785 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
46 ssrab2 3415 . . . 4  |-  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )
4745, 46jctil 524 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. q  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) )
48 pmapsub.s . . . . 5  |-  S  =  ( PSubSp `  K )
492, 21, 3, 48ispsubsp 30273 . . . 4  |-  ( K  e.  Lat  ->  ( { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S  <->  ( { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } A. q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5049adantr 452 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  e.  S  <->  ( {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X }  C_  ( Atoms `  K )  /\  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5147, 50mpbird 224 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S )
525, 51eqeltrd 2504 1  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2692   {crab 2696    C_ wss 3307   class class class wbr 4199   ` cfv 5440  (class class class)co 6067   Basecbs 13452   lecple 13519   joincjn 14384   Latclat 14457   Atomscatm 29792   PSubSpcpsubsp 30024   pmapcpmap 30025
This theorem is referenced by:  hlmod1i  30384  polsubN  30435  pl42lem4N  30510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-undef 6529  df-riota 6535  df-poset 14386  df-lub 14414  df-join 14416  df-lat 14458  df-ats 29796  df-psubsp 30031  df-pmap 30032
  Copyright terms: Public domain W3C validator