Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapsub Unicode version

Theorem pmapsub 30579
Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
pmapsub.b  |-  B  =  ( Base `  K
)
pmapsub.s  |-  S  =  ( PSubSp `  K )
pmapsub.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapsub  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )

Proof of Theorem pmapsub
Dummy variables  q  p  r  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmapsub.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2296 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2296 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 pmapsub.m . . 3  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapval 30568 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  =  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } )
6 breq1 4042 . . . . . . . . . . . . . 14  |-  ( c  =  p  ->  (
c ( le `  K ) X  <->  p ( le `  K ) X ) )
76elrab 2936 . . . . . . . . . . . . 13  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( p  e.  ( Atoms `  K )  /\  p ( le `  K ) X ) )
81, 3atbase 30101 . . . . . . . . . . . . . 14  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
98anim1i 551 . . . . . . . . . . . . 13  |-  ( ( p  e.  ( Atoms `  K )  /\  p
( le `  K
) X )  -> 
( p  e.  B  /\  p ( le `  K ) X ) )
107, 9sylbi 187 . . . . . . . . . . . 12  |-  ( p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( p  e.  B  /\  p
( le `  K
) X ) )
11 breq1 4042 . . . . . . . . . . . . . 14  |-  ( c  =  q  ->  (
c ( le `  K ) X  <->  q ( le `  K ) X ) )
1211elrab 2936 . . . . . . . . . . . . 13  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( q  e.  ( Atoms `  K )  /\  q ( le `  K ) X ) )
131, 3atbase 30101 . . . . . . . . . . . . . 14  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
1413anim1i 551 . . . . . . . . . . . . 13  |-  ( ( q  e.  ( Atoms `  K )  /\  q
( le `  K
) X )  -> 
( q  e.  B  /\  q ( le `  K ) X ) )
1512, 14sylbi 187 . . . . . . . . . . . 12  |-  ( q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  ->  ( q  e.  B  /\  q
( le `  K
) X ) )
1610, 15anim12i 549 . . . . . . . . . . 11  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) ) )
17 an4 797 . . . . . . . . . . 11  |-  ( ( ( p  e.  B  /\  p ( le `  K ) X )  /\  ( q  e.  B  /\  q ( le `  K ) X ) )  <->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1816, 17sylib 188 . . . . . . . . . 10  |-  ( ( p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
)  ->  ( (
p  e.  B  /\  q  e.  B )  /\  ( p ( le
`  K ) X  /\  q ( le
`  K ) X ) ) )
1918anim2i 552 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  ( ( K  e.  Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) ) )
201, 3atbase 30101 . . . . . . . . 9  |-  ( r  e.  ( Atoms `  K
)  ->  r  e.  B )
21 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( join `  K )  =  (
join `  K )
221, 2, 21latjle12 14184 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  <->  ( p (
join `  K )
q ) ( le
`  K ) X ) )
2322biimpd 198 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  q  e.  B  /\  X  e.  B
) )  ->  (
( p ( le
`  K ) X  /\  q ( le
`  K ) X )  ->  ( p
( join `  K )
q ) ( le
`  K ) X ) )
24233exp2 1169 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
p  e.  B  -> 
( q  e.  B  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  (
p ( join `  K
) q ) ( le `  K ) X ) ) ) ) )
2524imp3a 420 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( X  e.  B  ->  ( ( p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2625com23 72 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( (
p ( le `  K ) X  /\  q ( le `  K ) X )  ->  ( p (
join `  K )
q ) ( le
`  K ) X ) ) ) )
2726imp43 578 . . . . . . . . . . 11  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( ( p  e.  B  /\  q  e.  B )  /\  (
p ( le `  K ) X  /\  q ( le `  K ) X ) ) )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
2827adantr 451 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
p ( join `  K
) q ) ( le `  K ) X )
291, 21latjcl 14172 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  q  e.  B )  ->  ( p ( join `  K ) q )  e.  B )
30293expib 1154 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  (
( p  e.  B  /\  q  e.  B
)  ->  ( p
( join `  K )
q )  e.  B
) )
311, 2lattr 14178 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( r  e.  B  /\  ( p ( join `  K ) q )  e.  B  /\  X  e.  B ) )  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) )
32313exp2 1169 . . . . . . . . . . . . . 14  |-  ( K  e.  Lat  ->  (
r  e.  B  -> 
( ( p (
join `  K )
q )  e.  B  ->  ( X  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3332com24 81 . . . . . . . . . . . . 13  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p ( join `  K ) q )  e.  B  ->  (
r  e.  B  -> 
( ( r ( le `  K ) ( p ( join `  K ) q )  /\  ( p (
join `  K )
q ) ( le
`  K ) X )  ->  r ( le `  K ) X ) ) ) ) )
3430, 33syl5d 62 . . . . . . . . . . . 12  |-  ( K  e.  Lat  ->  ( X  e.  B  ->  ( ( p  e.  B  /\  q  e.  B
)  ->  ( r  e.  B  ->  ( ( r ( le `  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) ) ) ) )
3534imp41 576 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  B  /\  q  e.  B )
)  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3635adantlrr 701 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
( r ( le
`  K ) ( p ( join `  K
) q )  /\  ( p ( join `  K ) q ) ( le `  K
) X )  -> 
r ( le `  K ) X ) )
3728, 36mpan2d 655 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
( p  e.  B  /\  q  e.  B
)  /\  ( p
( le `  K
) X  /\  q
( le `  K
) X ) ) )  /\  r  e.  B )  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r ( le `  K ) X ) )
3819, 20, 37syl2an 463 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r
( le `  K
) X ) )
39 simpr 447 . . . . . . . 8  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  r  e.  ( Atoms `  K )
)
4038, 39jctild 527 . . . . . . 7  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  (
r  e.  ( Atoms `  K )  /\  r
( le `  K
) X ) ) )
41 breq1 4042 . . . . . . . 8  |-  ( c  =  r  ->  (
c ( le `  K ) X  <->  r ( le `  K ) X ) )
4241elrab 2936 . . . . . . 7  |-  ( r  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  <->  ( r  e.  ( Atoms `  K )  /\  r ( le `  K ) X ) )
4340, 42syl6ibr 218 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  X  e.  B )  /\  (
p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  /\  q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )  /\  r  e.  ( Atoms `  K )
)  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }
) )
4443ralrimiva 2639 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  e.  B )  /\  ( p  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  /\  q  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )  ->  A. r  e.  (
Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
4544ralrimivva 2648 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) )
46 ssrab2 3271 . . . 4  |-  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )
4745, 46jctil 523 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. q  e. 
{ c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) )
48 pmapsub.s . . . . 5  |-  S  =  ( PSubSp `  K )
492, 21, 3, 48ispsubsp 30556 . . . 4  |-  ( K  e.  Lat  ->  ( { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S  <->  ( { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X }  C_  ( Atoms `  K )  /\  A. p  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } A. q  e.  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X } A. r  e.  ( Atoms `  K ) ( r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5049adantr 451 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X }  e.  S  <->  ( {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X }  C_  ( Atoms `  K )  /\  A. p  e.  {
c  e.  ( Atoms `  K )  |  c ( le `  K
) X } A. q  e.  { c  e.  ( Atoms `  K )  |  c ( le
`  K ) X } A. r  e.  ( Atoms `  K )
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { c  e.  ( Atoms `  K
)  |  c ( le `  K ) X } ) ) ) )
5147, 50mpbird 223 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  { c  e.  (
Atoms `  K )  |  c ( le `  K ) X }  e.  S )
525, 51eqeltrd 2370 1  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( M `  X
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Latclat 14167   Atomscatm 30075   PSubSpcpsubsp 30307   pmapcpmap 30308
This theorem is referenced by:  hlmod1i  30667  polsubN  30718  pl42lem4N  30793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-lub 14124  df-join 14126  df-lat 14168  df-ats 30079  df-psubsp 30314  df-pmap 30315
  Copyright terms: Public domain W3C validator