Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapval Unicode version

Theorem pmapval 29113
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b  |-  B  =  ( Base `  K
)
pmapfval.l  |-  .<_  =  ( le `  K )
pmapfval.a  |-  A  =  ( Atoms `  K )
pmapfval.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapval  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  =  { a  e.  A  |  a 
.<_  X } )
Distinct variable groups:    A, a    K, a    X, a
Allowed substitution hints:    B( a)    C( a)   
.<_ ( a)    M( a)

Proof of Theorem pmapval
StepHypRef Expression
1 pmapfval.b . . . 4  |-  B  =  ( Base `  K
)
2 pmapfval.l . . . 4  |-  .<_  =  ( le `  K )
3 pmapfval.a . . . 4  |-  A  =  ( Atoms `  K )
4 pmapfval.m . . . 4  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapfval 29112 . . 3  |-  ( K  e.  C  ->  M  =  ( x  e.  B  |->  { a  e.  A  |  a  .<_  x } ) )
65fveq1d 5460 . 2  |-  ( K  e.  C  ->  ( M `  X )  =  ( ( x  e.  B  |->  { a  e.  A  |  a 
.<_  x } ) `  X ) )
7 breq2 4001 . . . 4  |-  ( x  =  X  ->  (
a  .<_  x  <->  a  .<_  X ) )
87rabbidv 2755 . . 3  |-  ( x  =  X  ->  { a  e.  A  |  a 
.<_  x }  =  {
a  e.  A  | 
a  .<_  X } )
9 eqid 2258 . . 3  |-  ( x  e.  B  |->  { a  e.  A  |  a 
.<_  x } )  =  ( x  e.  B  |->  { a  e.  A  |  a  .<_  x }
)
10 fvex 5472 . . . . 5  |-  ( Atoms `  K )  e.  _V
113, 10eqeltri 2328 . . . 4  |-  A  e. 
_V
1211rabex 4139 . . 3  |-  { a  e.  A  |  a 
.<_  X }  e.  _V
138, 9, 12fvmpt 5536 . 2  |-  ( X  e.  B  ->  (
( x  e.  B  |->  { a  e.  A  |  a  .<_  x }
) `  X )  =  { a  e.  A  |  a  .<_  X }
)
146, 13sylan9eq 2310 1  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  =  { a  e.  A  |  a 
.<_  X } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2522   _Vcvv 2763   class class class wbr 3997    e. cmpt 4051   ` cfv 4673   Basecbs 13110   lecple 13177   Atomscatm 28620   pmapcpmap 28853
This theorem is referenced by:  elpmap  29114  pmapssat  29115  pmaple  29117  pmapat  29119  pmap0  29121  pmap1N  29123  pmapsub  29124  pmapglbx  29125  isline2  29130  linepmap  29131  polpmapN  29268  2polssN  29271  pmaplubN  29280
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-pmap 28860
  Copyright terms: Public domain W3C validator