Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapval Unicode version

Theorem pmapval 29214
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
Hypotheses
Ref Expression
pmapfval.b  |-  B  =  ( Base `  K
)
pmapfval.l  |-  .<_  =  ( le `  K )
pmapfval.a  |-  A  =  ( Atoms `  K )
pmapfval.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapval  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  =  { a  e.  A  |  a 
.<_  X } )
Distinct variable groups:    A, a    K, a    X, a
Dummy variable  x is distinct from all other variables.
Allowed substitution hints:    B( a)    C( a)   
.<_ ( a)    M( a)

Proof of Theorem pmapval
StepHypRef Expression
1 pmapfval.b . . . 4  |-  B  =  ( Base `  K
)
2 pmapfval.l . . . 4  |-  .<_  =  ( le `  K )
3 pmapfval.a . . . 4  |-  A  =  ( Atoms `  K )
4 pmapfval.m . . . 4  |-  M  =  ( pmap `  K
)
51, 2, 3, 4pmapfval 29213 . . 3  |-  ( K  e.  C  ->  M  =  ( x  e.  B  |->  { a  e.  A  |  a  .<_  x } ) )
65fveq1d 5488 . 2  |-  ( K  e.  C  ->  ( M `  X )  =  ( ( x  e.  B  |->  { a  e.  A  |  a 
.<_  x } ) `  X ) )
7 breq2 4029 . . . 4  |-  ( x  =  X  ->  (
a  .<_  x  <->  a  .<_  X ) )
87rabbidv 2782 . . 3  |-  ( x  =  X  ->  { a  e.  A  |  a 
.<_  x }  =  {
a  e.  A  | 
a  .<_  X } )
9 eqid 2285 . . 3  |-  ( x  e.  B  |->  { a  e.  A  |  a 
.<_  x } )  =  ( x  e.  B  |->  { a  e.  A  |  a  .<_  x }
)
10 fvex 5500 . . . . 5  |-  ( Atoms `  K )  e.  _V
113, 10eqeltri 2355 . . . 4  |-  A  e. 
_V
1211rabex 4167 . . 3  |-  { a  e.  A  |  a 
.<_  X }  e.  _V
138, 9, 12fvmpt 5564 . 2  |-  ( X  e.  B  ->  (
( x  e.  B  |->  { a  e.  A  |  a  .<_  x }
) `  X )  =  { a  e.  A  |  a  .<_  X }
)
146, 13sylan9eq 2337 1  |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X
)  =  { a  e.  A  |  a 
.<_  X } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   {crab 2549   _Vcvv 2790   class class class wbr 4025    e. cmpt 4079   ` cfv 5222   Basecbs 13143   lecple 13210   Atomscatm 28721   pmapcpmap 28954
This theorem is referenced by:  elpmap  29215  pmapssat  29216  pmaple  29218  pmapat  29220  pmap0  29222  pmap1N  29224  pmapsub  29225  pmapglbx  29226  isline2  29231  linepmap  29232  polpmapN  29369  2polssN  29372  pmaplubN  29381
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-pmap 28961
  Copyright terms: Public domain W3C validator