Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrfrn Unicode version

Theorem pmtrfrn 27503
Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
pmtrfrn.p  |-  P  =  dom  ( F  \  _I  )
Assertion
Ref Expression
pmtrfrn  |-  ( F  e.  R  ->  (
( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) )

Proof of Theorem pmtrfrn
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3472 . . . 4  |-  -.  F  e.  (/)
2 pmtrrn.r . . . . . 6  |-  R  =  ran  T
3 pmtrrn.t . . . . . . . . 9  |-  T  =  (pmTrsp `  D )
4 fvprc 5535 . . . . . . . . 9  |-  ( -.  D  e.  _V  ->  (pmTrsp `  D )  =  (/) )
53, 4syl5eq 2340 . . . . . . . 8  |-  ( -.  D  e.  _V  ->  T  =  (/) )
65rneqd 4922 . . . . . . 7  |-  ( -.  D  e.  _V  ->  ran 
T  =  ran  (/) )
7 rn0 4952 . . . . . . 7  |-  ran  (/)  =  (/)
86, 7syl6eq 2344 . . . . . 6  |-  ( -.  D  e.  _V  ->  ran 
T  =  (/) )
92, 8syl5eq 2340 . . . . 5  |-  ( -.  D  e.  _V  ->  R  =  (/) )
109eleq2d 2363 . . . 4  |-  ( -.  D  e.  _V  ->  ( F  e.  R  <->  F  e.  (/) ) )
111, 10mtbiri 294 . . 3  |-  ( -.  D  e.  _V  ->  -.  F  e.  R )
1211con4i 122 . 2  |-  ( F  e.  R  ->  D  e.  _V )
13 mptexg 5761 . . . . . . . 8  |-  ( D  e.  _V  ->  (
z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) )  e.  _V )
1413ralrimivw 2640 . . . . . . 7  |-  ( D  e.  _V  ->  A. w  e.  { x  e.  ~P D  |  x  ~~  2o }  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) )  e.  _V )
15 eqid 2296 . . . . . . . 8  |-  ( w  e.  { x  e. 
~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  =  ( w  e.  { x  e. 
~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )
1615fnmpt 5386 . . . . . . 7  |-  ( A. w  e.  { x  e.  ~P D  |  x 
~~  2o }  (
z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) )  e.  _V  ->  (
w  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  Fn  { x  e.  ~P D  |  x 
~~  2o } )
1714, 16syl 15 . . . . . 6  |-  ( D  e.  _V  ->  (
w  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  Fn  { x  e.  ~P D  |  x 
~~  2o } )
183pmtrfval 27496 . . . . . . 7  |-  ( D  e.  _V  ->  T  =  ( w  e. 
{ x  e.  ~P D  |  x  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) ) )
1918fneq1d 5351 . . . . . 6  |-  ( D  e.  _V  ->  ( T  Fn  { x  e.  ~P D  |  x 
~~  2o }  <->  ( w  e.  { x  e.  ~P D  |  x  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  Fn 
{ x  e.  ~P D  |  x  ~~  2o } ) )
2017, 19mpbird 223 . . . . 5  |-  ( D  e.  _V  ->  T  Fn  { x  e.  ~P D  |  x  ~~  2o } )
21 fvelrnb 5586 . . . . 5  |-  ( T  Fn  { x  e. 
~P D  |  x 
~~  2o }  ->  ( F  e.  ran  T  <->  E. y  e.  { x  e.  ~P D  |  x 
~~  2o }  ( T `  y )  =  F ) )
2220, 21syl 15 . . . 4  |-  ( D  e.  _V  ->  ( F  e.  ran  T  <->  E. y  e.  { x  e.  ~P D  |  x  ~~  2o }  ( T `  y )  =  F ) )
232eleq2i 2360 . . . 4  |-  ( F  e.  R  <->  F  e.  ran  T )
24 breq1 4042 . . . . . 6  |-  ( x  =  y  ->  (
x  ~~  2o  <->  y  ~~  2o ) )
2524rexrab 2942 . . . . 5  |-  ( E. y  e.  { x  e.  ~P D  |  x 
~~  2o }  ( T `  y )  =  F  <->  E. y  e.  ~P  D ( y  ~~  2o  /\  ( T `  y )  =  F ) )
2625bicomi 193 . . . 4  |-  ( E. y  e.  ~P  D
( y  ~~  2o  /\  ( T `  y
)  =  F )  <->  E. y  e.  { x  e.  ~P D  |  x 
~~  2o }  ( T `  y )  =  F )
2722, 23, 263bitr4g 279 . . 3  |-  ( D  e.  _V  ->  ( F  e.  R  <->  E. y  e.  ~P  D ( y 
~~  2o  /\  ( T `  y )  =  F ) ) )
28 elpwi 3646 . . . . 5  |-  ( y  e.  ~P D  -> 
y  C_  D )
29 simp1 955 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  D  e.  _V )
303pmtrmvd 27501 . . . . . . . . . . 11  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  dom  ( ( T `  y )  \  _I  )  =  y )
31 simp2 956 . . . . . . . . . . 11  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  y  C_  D )
3230, 31eqsstrd 3225 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  dom  ( ( T `  y )  \  _I  )  C_  D )
33 simp3 957 . . . . . . . . . . 11  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  y  ~~  2o )
3430, 33eqbrtrd 4059 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  dom  ( ( T `  y )  \  _I  )  ~~  2o )
3529, 32, 343jca 1132 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  ( D  e.  _V  /\  dom  ( ( T `  y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o ) )
3630eqcomd 2301 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  y  =  dom  ( ( T `
 y )  \  _I  ) )
3736fveq2d 5545 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) )
3835, 37jca 518 . . . . . . . 8  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  (
( D  e.  _V  /\ 
dom  ( ( T `
 y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o )  /\  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) ) )
39 difeq1 3300 . . . . . . . . . . 11  |-  ( ( T `  y )  =  F  ->  (
( T `  y
)  \  _I  )  =  ( F  \  _I  ) )
4039dmeqd 4897 . . . . . . . . . 10  |-  ( ( T `  y )  =  F  ->  dom  ( ( T `  y )  \  _I  )  =  dom  ( F 
\  _I  ) )
41 pmtrfrn.p . . . . . . . . . 10  |-  P  =  dom  ( F  \  _I  )
4240, 41syl6eqr 2346 . . . . . . . . 9  |-  ( ( T `  y )  =  F  ->  dom  ( ( T `  y )  \  _I  )  =  P )
43 sseq1 3212 . . . . . . . . . . . 12  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( dom  ( ( T `
 y )  \  _I  )  C_  D  <->  P  C_  D
) )
44 breq1 4042 . . . . . . . . . . . 12  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( dom  ( ( T `
 y )  \  _I  )  ~~  2o  <->  P  ~~  2o ) )
4543, 443anbi23d 1255 . . . . . . . . . . 11  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( ( D  e.  _V  /\ 
dom  ( ( T `
 y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o )  <->  ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o ) ) )
4645adantl 452 . . . . . . . . . 10  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( ( D  e. 
_V  /\  dom  ( ( T `  y ) 
\  _I  )  C_  D  /\  dom  ( ( T `  y ) 
\  _I  )  ~~  2o )  <->  ( D  e. 
_V  /\  P  C_  D  /\  P  ~~  2o ) ) )
47 simpl 443 . . . . . . . . . . 11  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( T `  y
)  =  F )
48 fveq2 5541 . . . . . . . . . . . 12  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( T `  dom  (
( T `  y
)  \  _I  )
)  =  ( T `
 P ) )
4948adantl 452 . . . . . . . . . . 11  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( T `  dom  ( ( T `  y )  \  _I  ) )  =  ( T `  P ) )
5047, 49eqeq12d 2310 . . . . . . . . . 10  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( ( T `  y )  =  ( T `  dom  (
( T `  y
)  \  _I  )
)  <->  F  =  ( T `  P )
) )
5146, 50anbi12d 691 . . . . . . . . 9  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( ( ( D  e.  _V  /\  dom  ( ( T `  y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o )  /\  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) )  <->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) )
5242, 51mpdan 649 . . . . . . . 8  |-  ( ( T `  y )  =  F  ->  (
( ( D  e. 
_V  /\  dom  ( ( T `  y ) 
\  _I  )  C_  D  /\  dom  ( ( T `  y ) 
\  _I  )  ~~  2o )  /\  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) )  <->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) )
5338, 52syl5ibcom 211 . . . . . . 7  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  (
( T `  y
)  =  F  -> 
( ( D  e. 
_V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) ) )
54533exp 1150 . . . . . 6  |-  ( D  e.  _V  ->  (
y  C_  D  ->  ( y  ~~  2o  ->  ( ( T `  y
)  =  F  -> 
( ( D  e. 
_V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) ) ) ) )
5554imp4a 572 . . . . 5  |-  ( D  e.  _V  ->  (
y  C_  D  ->  ( ( y  ~~  2o  /\  ( T `  y
)  =  F )  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) ) )
5628, 55syl5 28 . . . 4  |-  ( D  e.  _V  ->  (
y  e.  ~P D  ->  ( ( y  ~~  2o  /\  ( T `  y )  =  F )  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) ) )
5756rexlimdv 2679 . . 3  |-  ( D  e.  _V  ->  ( E. y  e.  ~P  D ( y  ~~  2o  /\  ( T `  y )  =  F )  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) )
5827, 57sylbid 206 . 2  |-  ( D  e.  _V  ->  ( F  e.  R  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) ) )
5912, 58mpcom 32 1  |-  ( F  e.  R  ->  (
( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    \ cdif 3162    C_ wss 3165   (/)c0 3468   ifcif 3578   ~Pcpw 3638   {csn 3653   U.cuni 3843   class class class wbr 4039    e. cmpt 4093    _I cid 4320   dom cdm 4705   ran crn 4706    Fn wfn 5266   ` cfv 5271   2oc2o 6489    ~~ cen 6876  pmTrspcpmtr 27487
This theorem is referenced by:  pmtrffv  27504  pmtrfinv  27505  pmtrfmvdn0  27506  pmtrff1o  27507  pmtrfcnv  27508  pmtrfb  27509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-2o 6496  df-er 6676  df-en 6880  df-fin 6883  df-pmtr 27488
  Copyright terms: Public domain W3C validator