MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pn0sr Unicode version

Theorem pn0sr 8656
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pn0sr  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )

Proof of Theorem pn0sr
StepHypRef Expression
1 1idsr 8653 . . 3  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
21oveq1d 5772 . 2  |-  ( A  e.  R.  ->  (
( A  .R  1R )  +R  ( A  .R  -1R ) )  =  ( A  +R  ( A  .R  -1R ) ) )
3 distrsr 8646 . . . 4  |-  ( A  .R  ( -1R  +R  1R ) )  =  ( ( A  .R  -1R )  +R  ( A  .R  1R ) )
4 m1p1sr 8647 . . . . 5  |-  ( -1R 
+R  1R )  =  0R
54oveq2i 5768 . . . 4  |-  ( A  .R  ( -1R  +R  1R ) )  =  ( A  .R  0R )
6 addcomsr 8642 . . . 4  |-  ( ( A  .R  -1R )  +R  ( A  .R  1R ) )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) )
73, 5, 63eqtr3i 2284 . . 3  |-  ( A  .R  0R )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) )
8 00sr 8654 . . 3  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
97, 8syl5eqr 2302 . 2  |-  ( A  e.  R.  ->  (
( A  .R  1R )  +R  ( A  .R  -1R ) )  =  0R )
102, 9eqtr3d 2290 1  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621  (class class class)co 5757   R.cnr 8422   0Rc0r 8423   1Rc1r 8424   -1Rcm1r 8425    +R cplr 8426    .R cmr 8427
This theorem is referenced by:  negexsr  8657  sqgt0sr  8661  map2psrpr  8665  axrnegex  8717
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-omul 6417  df-er 6593  df-ec 6595  df-qs 6599  df-ni 8429  df-pli 8430  df-mi 8431  df-lti 8432  df-plpq 8465  df-mpq 8466  df-ltpq 8467  df-enq 8468  df-nq 8469  df-erq 8470  df-plq 8471  df-mq 8472  df-1nq 8473  df-rq 8474  df-ltnq 8475  df-np 8538  df-1p 8539  df-plp 8540  df-mp 8541  df-ltp 8542  df-plpr 8612  df-mpr 8613  df-enr 8614  df-nr 8615  df-plr 8616  df-mr 8617  df-0r 8619  df-1r 8620  df-m1r 8621
  Copyright terms: Public domain W3C validator