MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3d Unicode version

Theorem pncan3d 9162
Description: Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
pncan3d  |-  ( ph  ->  ( A  +  ( B  -  A ) )  =  B )

Proof of Theorem pncan3d
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 pncan3 9061 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
41, 2, 3syl2anc 642 1  |-  ( ph  ->  ( A  +  ( B  -  A ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686  (class class class)co 5860   CCcc 8737    + caddc 8742    - cmin 9039
This theorem is referenced by:  xralrple  10534  quoremz  10961  intfrac2  10964  intfrac  10988  isercoll2  12144  iseralt  12159  mertenslem1  12342  eflt  12399  efival  12434  bitsmod  12629  bitsinv1lem  12634  odzdvds  12862  pcaddlem  12938  vdwapun  13023  vdwlem12  13041  odmodnn0  14857  mndodconglem  14858  minveclem4  18798  ivthlem2  18814  dvn2bss  19281  ftc2  19393  mdegmullem  19466  plymullem1  19598  dvtaylp  19751  dvntaylp  19752  dvntaylp0  19753  taylthlem1  19754  ulmbdd  19777  affineequiv  20125  mcubic  20145  quart1lem  20153  quart1  20154  asinsin  20190  birthdaylem2  20249  emcllem6  20296  perfectlem2  20471  lgseisenlem4  20593  lgsquadlem1  20595  dchrisumlem1  20640  dchrvmasum2if  20648  dchrisum0lem1  20667  selberg3  20710  smcnlem  21272  axsegconlem10  24556  itg2addnc  24935  issubrv  25683  itgsinexp  27760  sigarcol  27865
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-riota 6306  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-ltxr 8874  df-sub 9041
  Copyright terms: Public domain W3C validator