Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pnonsingN Unicode version

Theorem pnonsingN 30569
Description: The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a  |-  A  =  ( Atoms `  K )
2polat.p  |-  P  =  ( _|_ P `  K )
Assertion
Ref Expression
pnonsingN  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  =  (/) )

Proof of Theorem pnonsingN
StepHypRef Expression
1 2polat.a . . . . 5  |-  A  =  ( Atoms `  K )
2 2polat.p . . . . 5  |-  P  =  ( _|_ P `  K )
31, 22polssN 30551 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  ( P `  ( P `  X ) ) )
4 ssrin 3558 . . . 4  |-  ( X 
C_  ( P `  ( P `  X ) )  ->  ( X  i^i  ( P `  X
) )  C_  (
( P `  ( P `  X )
)  i^i  ( P `  X ) ) )
53, 4syl 16 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  C_  ( ( P `  ( P `  X ) )  i^i  ( P `  X
) ) )
6 eqid 2435 . . . . . 6  |-  ( lub `  K )  =  ( lub `  K )
7 eqid 2435 . . . . . 6  |-  ( pmap `  K )  =  (
pmap `  K )
86, 1, 7, 22polvalN 30550 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  ( P `  X )
)  =  ( (
pmap `  K ) `  ( ( lub `  K
) `  X )
) )
9 eqid 2435 . . . . . 6  |-  ( oc
`  K )  =  ( oc `  K
)
106, 9, 1, 7, 2polval2N 30542 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( (
pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )
118, 10ineq12d 3535 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( P `  ( P `  X ) )  i^i  ( P `
 X ) )  =  ( ( (
pmap `  K ) `  ( ( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) ) )
12 hlop 29999 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OP )
1312adantr 452 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  OP )
14 hlclat 29995 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CLat )
15 eqid 2435 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
1615, 1atssbase 29927 . . . . . . . . 9  |-  A  C_  ( Base `  K )
17 sstr 3348 . . . . . . . . 9  |-  ( ( X  C_  A  /\  A  C_  ( Base `  K
) )  ->  X  C_  ( Base `  K
) )
1816, 17mpan2 653 . . . . . . . 8  |-  ( X 
C_  A  ->  X  C_  ( Base `  K
) )
1915, 6clatlubcl 14528 . . . . . . . 8  |-  ( ( K  e.  CLat  /\  X  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  X )  e.  ( Base `  K
) )
2014, 18, 19syl2an 464 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( lub `  K
) `  X )  e.  ( Base `  K
) )
21 eqid 2435 . . . . . . . 8  |-  ( meet `  K )  =  (
meet `  K )
22 eqid 2435 . . . . . . . 8  |-  ( 0.
`  K )  =  ( 0. `  K
)
2315, 9, 21, 22opnoncon 29845 . . . . . . 7  |-  ( ( K  e.  OP  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
) )  ->  (
( ( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) )  =  ( 0. `  K ) )
2413, 20, 23syl2anc 643 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( ( lub `  K ) `  X
) ( meet `  K
) ( ( oc
`  K ) `  ( ( lub `  K
) `  X )
) )  =  ( 0. `  K ) )
2524fveq2d 5723 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  ( ( pmap `  K
) `  ( 0. `  K ) ) )
26 simpl 444 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  HL )
2715, 9opoccl 29831 . . . . . . 7  |-  ( ( K  e.  OP  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( ( lub `  K ) `  X ) )  e.  ( Base `  K
) )
2813, 20, 27syl2anc 643 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( oc `  K ) `  (
( lub `  K
) `  X )
)  e.  ( Base `  K ) )
2915, 21, 1, 7pmapmeet 30409 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
)  /\  ( ( oc `  K ) `  ( ( lub `  K
) `  X )
)  e.  ( Base `  K ) )  -> 
( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  ( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) ) )
3026, 20, 28, 29syl3anc 1184 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( pmap `  K
) `  ( (
( lub `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  ( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) ) )
31 hlatl 29997 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
3231adantr 452 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  AtLat )
3322, 7pmap0 30401 . . . . . 6  |-  ( K  e.  AtLat  ->  ( ( pmap `  K ) `  ( 0. `  K ) )  =  (/) )
3432, 33syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( pmap `  K
) `  ( 0. `  K ) )  =  (/) )
3525, 30, 343eqtr3d 2475 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( ( pmap `  K ) `  (
( lub `  K
) `  X )
)  i^i  ( ( pmap `  K ) `  ( ( oc `  K ) `  (
( lub `  K
) `  X )
) ) )  =  (/) )
3611, 35eqtrd 2467 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( P `  ( P `  X ) )  i^i  ( P `
 X ) )  =  (/) )
375, 36sseqtrd 3376 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  C_  (/) )
38 ss0b 3649 . 2  |-  ( ( X  i^i  ( P `
 X ) ) 
C_  (/)  <->  ( X  i^i  ( P `  X ) )  =  (/) )
3937, 38sylib 189 1  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( X  i^i  ( P `  X )
)  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    i^i cin 3311    C_ wss 3312   (/)c0 3620   ` cfv 5445  (class class class)co 6072   Basecbs 13457   occoc 13525   lubclub 14387   meetcmee 14390   0.cp0 14454   CLatccla 14524   OPcops 29809   Atomscatm 29900   AtLatcal 29901   HLchlt 29987   pmapcpmap 30133   _|_
PcpolN 30538
This theorem is referenced by:  osumcllem4N  30595  pexmidN  30605  pexmidlem1N  30606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-pmap 30140  df-polarityN 30539
  Copyright terms: Public domain W3C validator