MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt Unicode version

Theorem pnt 20758
Description: The Prime Number Theorem: the number of prime numbers less than  x tends asymptotically to  x  /  log (
x ) as  x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  ~~> r  1

Proof of Theorem pnt
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 8832 . . . . . . 7  |-  1  e.  RR
2 rexr 8872 . . . . . . 7  |-  ( 1  e.  RR  ->  1  e.  RR* )
31, 2ax-mp 8 . . . . . 6  |-  1  e.  RR*
4 1lt2 9881 . . . . . 6  |-  1  <  2
5 df-ioo 10655 . . . . . . 7  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
6 df-ico 10657 . . . . . . 7  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
7 xrltletr 10483 . . . . . . 7  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  w  e. 
RR* )  ->  (
( 1  <  2  /\  2  <_  w )  ->  1  <  w
) )
85, 6, 7ixxss1 10669 . . . . . 6  |-  ( ( 1  e.  RR*  /\  1  <  2 )  ->  (
2 [,)  +oo )  C_  ( 1 (,)  +oo ) )
93, 4, 8mp2an 653 . . . . 5  |-  ( 2 [,)  +oo )  C_  (
1 (,)  +oo )
10 resmpt 4998 . . . . 5  |-  ( ( 2 [,)  +oo )  C_  ( 1 (,)  +oo )  ->  ( ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) ) )
119, 10mp1i 11 . . . 4  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) ) )
129sseli 3176 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  ( 1 (,)  +oo ) )
13 ioossre 10707 . . . . . . . . . . 11  |-  ( 1 (,)  +oo )  C_  RR
1413sseli 3176 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
1512, 14syl 15 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR )
16 2re 9810 . . . . . . . . . . 11  |-  2  e.  RR
17 pnfxr 10450 . . . . . . . . . . 11  |-  +oo  e.  RR*
18 elico2 10709 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  +oo 
e.  RR* )  ->  (
x  e.  ( 2 [,)  +oo )  <->  ( x  e.  RR  /\  2  <_  x  /\  x  <  +oo ) ) )
1916, 17, 18mp2an 653 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  <->  ( x  e.  RR  /\  2  <_  x  /\  x  <  +oo ) )
2019simp2bi 971 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  2  <_  x )
21 chtrpcl 20408 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
( theta `  x )  e.  RR+ )
2215, 20, 21syl2anc 642 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  e.  RR+ )
23 0re 8833 . . . . . . . . . . . 12  |-  0  e.  RR
2423a1i 10 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  e.  RR )
251a1i 10 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  1  e.  RR )
26 0lt1 9291 . . . . . . . . . . . 12  |-  0  <  1
2726a1i 10 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  <  1 )
28 eliooord 10705 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
2928simpld 445 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  1  <  x )
3024, 25, 14, 27, 29lttrd 8972 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  <  x )
3114, 30elrpd 10383 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR+ )
3212, 31syl 15 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR+ )
3322, 32rpdivcld 10402 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  x )  e.  RR+ )
3433adantl 452 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  x )  e.  RR+ )
35 ppinncl 20407 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
(π `  x )  e.  NN )
3615, 20, 35syl2anc 642 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  NN )
3736nnrpd 10384 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  RR+ )
3814, 29rplogcld 19975 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( log `  x )  e.  RR+ )
3912, 38syl 15 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  e.  RR+ )
4037, 39rpmulcld 10401 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  RR+ )
4122, 40rpdivcld 10402 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  RR+ )
4241adantl 452 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  RR+ )
4332ssriv 3184 . . . . . . . 8  |-  ( 2 [,)  +oo )  C_  RR+
44 resmpt 4998 . . . . . . . 8  |-  ( ( 2 [,)  +oo )  C_  RR+  ->  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (
theta `  x )  /  x ) ) )
4543, 44ax-mp 8 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (
theta `  x )  /  x ) )
46 pnt2 20757 . . . . . . . 8  |-  ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  ~~> r  1
47 rlimres 12027 . . . . . . . 8  |-  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  ~~> r  1  ->  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 )
4846, 47mp1i 11 . . . . . . 7  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( ( theta `  x )  /  x
) )  |`  (
2 [,)  +oo ) )  ~~> r  1 )
4945, 48syl5eqbrr 4057 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( theta `  x
)  /  x ) )  ~~> r  1 )
50 chtppilim 20619 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) )  ~~> r  1
5150a1i 10 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) )  ~~> r  1 )
52 ax-1ne0 8801 . . . . . . 7  |-  1  =/=  0
5352a1i 10 . . . . . 6  |-  (  T. 
->  1  =/=  0
)
5441rpne0d 10390 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  =/=  0 )
5554adantl 452 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  =/=  0 )
5634, 42, 49, 51, 53, 55rlimdiv 12114 . . . . 5  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( ( theta `  x )  /  x
)  /  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) ) )  ~~> r  ( 1  /  1 ) )
5715recnd 8856 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  CC )
58 chtcl 20342 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( theta `  x )  e.  RR )
5914, 58syl 15 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( theta `  x )  e.  RR )
6059recnd 8856 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( theta `  x )  e.  CC )
6112, 60syl 15 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  e.  CC )
6257, 61mulcomd 8851 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
x  x.  ( theta `  x ) )  =  ( ( theta `  x
)  x.  x ) )
6362oveq2d 5835 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( x  x.  ( theta `  x
) ) )  =  ( ( ( theta `  x )  x.  (
(π `  x )  x.  ( log `  x
) ) )  / 
( ( theta `  x
)  x.  x ) ) )
6440rpcnd 10387 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  CC )
6532rpne0d 10390 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  =/=  0 )
6622rpne0d 10390 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  =/=  0 )
6764, 57, 61, 65, 66divcan5d 9557 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( (
theta `  x )  x.  x ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
6863, 67eqtrd 2315 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( x  x.  ( theta `  x
) ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
6940rpne0d 10390 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  =/=  0
)
7061, 57, 61, 64, 65, 69, 66divdivdivd 9578 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  /  x )  /  ( ( theta `  x )  /  (
(π `  x )  x.  ( log `  x
) ) ) )  =  ( ( (
theta `  x )  x.  ( (π `  x )  x.  ( log `  x
) ) )  / 
( x  x.  ( theta `  x ) ) ) )
7136nncnd 9757 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  CC )
7239rpcnd 10387 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  e.  CC )
7339rpne0d 10390 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  =/=  0 )
7471, 57, 72, 65, 73divdiv2d 9563 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  =  ( ( (π `  x )  x.  ( log `  x
) )  /  x
) )
7568, 70, 743eqtr4d 2325 . . . . . 6  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  /  x )  /  ( ( theta `  x )  /  (
(π `  x )  x.  ( log `  x
) ) ) )  =  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )
7675mpteq2ia 4102 . . . . 5  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( ( ( theta `  x )  /  x )  /  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) ) ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )
77 ax-1cn 8790 . . . . . 6  |-  1  e.  CC
7877div1i 9483 . . . . 5  |-  ( 1  /  1 )  =  1
7956, 76, 783brtr3g 4054 . . . 4  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )  ~~> r  1 )
8011, 79eqbrtrd 4043 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 )
81 ppicl 20364 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (π `  x )  e.  NN0 )
8214, 81syl 15 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (π `  x )  e.  NN0 )
8382nn0red 10014 . . . . . . . 8  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (π `  x )  e.  RR )
8431, 38rpdivcld 10402 . . . . . . . 8  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
x  /  ( log `  x ) )  e.  RR+ )
8583, 84rerpdivcld 10412 . . . . . . 7  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  RR )
8685recnd 8856 . . . . . 6  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  CC )
8786adantl 452 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  CC )
88 eqid 2283 . . . . 5  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  =  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )
8987, 88fmptd 5645 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) ) : ( 1 (,)  +oo ) --> CC )
9013a1i 10 . . . 4  |-  (  T. 
->  ( 1 (,)  +oo )  C_  RR )
9116a1i 10 . . . 4  |-  (  T. 
->  2  e.  RR )
9289, 90, 91rlimresb 12034 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  ~~> r  1  <->  ( (
x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 ) )
9380, 92mpbird 223 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )  ~~> r  1 )
9493trud 1314 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  ~~> r  1
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ w3a 934    T. wtru 1307    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   class class class wbr 4023    e. cmpt 4077    |` cres 4689   ` cfv 5220  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    x. cmul 8737    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863    / cdiv 9418   NNcn 9741   2c2 9790   NN0cn0 9960   RR+crp 10349   (,)cioo 10651   [,)cico 10653    ~~> r crli 11954   logclog 19907   thetaccht 20323  πcppi 20326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10655  df-ioc 10656  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-fac 11284  df-bc 11311  df-hash 11333  df-shft 11557  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-limsup 11940  df-clim 11957  df-rlim 11958  df-o1 11959  df-lo1 11960  df-sum 12154  df-ef 12344  df-e 12345  df-sin 12346  df-cos 12347  df-pi 12349  df-dvds 12527  df-gcd 12681  df-prm 12754  df-pc 12885  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-mulg 14487  df-cntz 14788  df-cmn 15086  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cld 16751  df-ntr 16752  df-cls 16753  df-nei 16830  df-lp 16863  df-perf 16864  df-cn 16952  df-cnp 16953  df-haus 17038  df-cmp 17109  df-tx 17252  df-hmeo 17441  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630  df-xms 17880  df-ms 17881  df-tms 17882  df-cncf 18377  df-limc 19211  df-dv 19212  df-log 19909  df-cxp 19910  df-em 20282  df-cht 20329  df-vma 20330  df-chp 20331  df-ppi 20332  df-mu 20333
  Copyright terms: Public domain W3C validator