MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Unicode version

Theorem pntibnd 20574
Description: Lemma for pnt 20595. Establish smallness of  R on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntibnd  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Distinct variable groups:    x, z,
y    u, k, x, y, z    e, c, k, l, u, x, y, z, R    e, a,
k, u, x, y, z
Allowed substitution hint:    R( a)

Proof of Theorem pntibnd
StepHypRef Expression
1 pntlem1.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrmax 20545 . 2  |-  E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d
31pntpbnd 20569 . 2  |-  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
4 reeanv 2669 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  <->  ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )
5 2rp 10238 . . . . . . . . 9  |-  2  e.  RR+
6 rpmulcl 10254 . . . . . . . . 9  |-  ( ( 2  e.  RR+  /\  b  e.  RR+ )  ->  (
2  x.  b )  e.  RR+ )
75, 6mpan 654 . . . . . . . 8  |-  ( b  e.  RR+  ->  ( 2  x.  b )  e.  RR+ )
8 2re 9695 . . . . . . . . 9  |-  2  e.  RR
9 1lt2 9765 . . . . . . . . 9  |-  1  <  2
10 rplogcl 19790 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
118, 9, 10mp2an 656 . . . . . . . 8  |-  ( log `  2 )  e.  RR+
12 rpaddcl 10253 . . . . . . . 8  |-  ( ( ( 2  x.  b
)  e.  RR+  /\  ( log `  2 )  e.  RR+ )  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
137, 11, 12sylancl 646 . . . . . . 7  |-  ( b  e.  RR+  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
1413ad2antlr 710 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  (
( 2  x.  b
)  +  ( log `  2 ) )  e.  RR+ )
15 id 21 . . . . . . . 8  |-  ( d  e.  RR+  ->  d  e.  RR+ )
16 eqid 2253 . . . . . . . 8  |-  ( ( 1  /  4 )  /  ( d  +  3 ) )  =  ( ( 1  / 
4 )  /  (
d  +  3 ) )
171, 15, 16pntibndlem1 20570 . . . . . . 7  |-  ( d  e.  RR+  ->  ( ( 1  /  4 )  /  ( d  +  3 ) )  e.  ( 0 (,) 1
) )
1817ad2antrr 709 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  (
( 1  /  4
)  /  ( d  +  3 ) )  e.  ( 0 (,) 1 ) )
19 elioore 10564 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR )
20 eliooord 10588 . . . . . . . . . . . . . . . 16  |-  ( e  e.  ( 0 (,) 1 )  ->  (
0  <  e  /\  e  <  1 ) )
2120simpld 447 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  e )
2219, 21elrpd 10267 . . . . . . . . . . . . . 14  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR+ )
2322rphalfcld 10281 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR+ )
2423rpred 10269 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR )
2523rpgt0d 10272 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  ( e  /  2
) )
26 1re 8717 . . . . . . . . . . . . . 14  |-  1  e.  RR
2726a1i 12 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  1  e.  RR )
28 rphalflt 10259 . . . . . . . . . . . . . 14  |-  ( e  e.  RR+  ->  ( e  /  2 )  < 
e )
2922, 28syl 17 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  e )
3020simprd 451 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  e  <  1 )
3124, 19, 27, 29, 30lttrd 8857 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  1 )
32 0xr 8758 . . . . . . . . . . . . 13  |-  0  e.  RR*
33 rexr 8757 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  1  e.  RR* )
3426, 33ax-mp 10 . . . . . . . . . . . . 13  |-  1  e.  RR*
35 elioo2 10575 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( e  /  2
)  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) ) )
3632, 34, 35mp2an 656 . . . . . . . . . . . 12  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) )
3724, 25, 31, 36syl3anbrc 1141 . . . . . . . . . . 11  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  ( 0 (,) 1 ) )
3837adantl 454 . . . . . . . . . 10  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( e  /  2 )  e.  ( 0 (,) 1
) )
39 oveq2 5718 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
b  /  f )  =  ( b  / 
( e  /  2
) ) )
4039fveq2d 5381 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( exp `  ( b  / 
f ) )  =  ( exp `  (
b  /  ( e  /  2 ) ) ) )
4140oveq1d 5725 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  (
( exp `  (
b  /  f ) ) [,)  +oo )  =  ( ( exp `  ( b  /  (
e  /  2 ) ) ) [,)  +oo ) )
42 breq2 3924 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( e  / 
2 )  ->  (
( abs `  (
( R `  n
)  /  n ) )  <_  f  <->  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) )
4342anbi2d 687 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4443rexbidv 2528 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4544ralbidv 2527 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  ( A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4641, 45raleqbidv 2699 . . . . . . . . . . . 12  |-  ( f  =  ( e  / 
2 )  ->  ( A. m  e.  (
( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  A. m  e.  ( ( exp `  ( b  /  ( e  / 
2 ) ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4746rexbidv 2528 . . . . . . . . . . 11  |-  ( f  =  ( e  / 
2 )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) ) )
4847rcla4v 2817 . . . . . . . . . 10  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  ->  ( A. f  e.  (
0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  f ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) ) )
4938, 48syl 17 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  ( e  / 
2 ) ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
50 simpll 733 . . . . . . . . . . . . 13  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
d  e.  RR+ )
5150ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
d  e.  RR+ )
52 simpllr 738 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d )
53 simplr 734 . . . . . . . . . . . . 13  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
b  e.  RR+ )
5453ad2antrr 709 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
b  e.  RR+ )
55 eqid 2253 . . . . . . . . . . . 12  |-  ( exp `  ( b  /  (
e  /  2 ) ) )  =  ( exp `  ( b  /  ( e  / 
2 ) ) )
56 eqid 2253 . . . . . . . . . . . 12  |-  ( ( 2  x.  b )  +  ( log `  2
) )  =  ( ( 2  x.  b
)  +  ( log `  2 ) )
57 simplr 734 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
e  e.  ( 0 (,) 1 ) )
58 simprl 735 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
g  e.  RR+ )
59 simprr 736 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. m  e.  (
( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) )
601, 51, 16, 52, 54, 55, 56, 57, 58, 59pntibndlem3 20573 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
6160expr 601 . . . . . . . . . 10  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  g  e.  RR+ )  ->  ( A. m  e.  (
( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6261rexlimdva 2629 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6349, 62syld 42 . . . . . . . 8  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6463ralrimdva 2595 . . . . . . 7  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
( A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6564impr 605 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
66 oveq1 5717 . . . . . . . . . . . 12  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
c  /  e )  =  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) )
6766fveq2d 5381 . . . . . . . . . . 11  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( exp `  ( c  / 
e ) )  =  ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) )
6867oveq1d 5725 . . . . . . . . . 10  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
( exp `  (
c  /  e ) ) [,)  +oo )  =  ( ( exp `  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) ) [,)  +oo ) )
6968raleqdv 2694 . . . . . . . . 9  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. k  e.  (
( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7069rexbidv 2528 . . . . . . . 8  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7170ralbidv 2527 . . . . . . 7  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
72 oveq1 5717 . . . . . . . . . . . . . . . 16  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
l  x.  e )  =  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )
7372oveq2d 5726 . . . . . . . . . . . . . . 15  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
1  +  ( l  x.  e ) )  =  ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) ) )
7473oveq1d 5725 . . . . . . . . . . . . . 14  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( 1  +  ( l  x.  e ) )  x.  z )  =  ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) )
7574breq1d 3930 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) )
7675anbi2d 687 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) ) )
7774oveq2d 5726 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) )  =  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) )
7877raleqdv 2694 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. u  e.  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e  <->  A. u  e.  ( z [,] (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e )
)
7976, 78anbi12d 694 . . . . . . . . . . 11  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8079rexbidv 2528 . . . . . . . . . 10  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8180ralbidv 2527 . . . . . . . . 9  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
8281rexralbidv 2549 . . . . . . . 8  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8382ralbidv 2527 . . . . . . 7  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
8471, 83rcla42ev 2829 . . . . . 6  |-  ( ( ( ( 2  x.  b )  +  ( log `  2 ) )  e.  RR+  /\  (
( 1  /  4
)  /  ( d  +  3 ) )  e.  ( 0 (,) 1 )  /\  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1 ) A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8514, 18, 65, 84syl3anc 1187 . . . . 5  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8685ex 425 . . . 4  |-  ( ( d  e.  RR+  /\  b  e.  RR+ )  ->  (
( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8786rexlimivv 2634 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
884, 87sylbir 206 . 2  |-  ( ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
892, 3, 88mp2an 656 1  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744   RR*cxr 8746    < clt 8747    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   2c2 9675   3c3 9676   4c4 9677   RR+crp 10233   (,)cioo 10534   [,)cico 10536   [,]cicc 10537   abscabs 11596   expce 12217   logclog 19744  ψcchp 20162
This theorem is referenced by:  pnt3  20593
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-o1 11841  df-lo1 11842  df-sum 12036  df-ef 12223  df-e 12224  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-cmp 16946  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-em 20119  df-cht 20166  df-vma 20167  df-chp 20168  df-ppi 20169  df-mu 20170
  Copyright terms: Public domain W3C validator