MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Unicode version

Theorem pntibnd 20744
Description: Lemma for pnt 20765. Establish smallness of  R on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntibnd  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Distinct variable groups:    x, z,
y    u, k, x, y, z    e, c, k, l, u, x, y, z, R    e, a,
k, u, x, y, z
Allowed substitution hint:    R( a)

Proof of Theorem pntibnd
Dummy variables  n  m  v  b  d 
f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
21pntrmax 20715 . 2  |-  E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d
31pntpbnd 20739 . 2  |-  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
4 reeanv 2709 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  <->  ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )
5 2rp 10361 . . . . . . . . 9  |-  2  e.  RR+
6 rpmulcl 10377 . . . . . . . . 9  |-  ( ( 2  e.  RR+  /\  b  e.  RR+ )  ->  (
2  x.  b )  e.  RR+ )
75, 6mpan 651 . . . . . . . 8  |-  ( b  e.  RR+  ->  ( 2  x.  b )  e.  RR+ )
8 2re 9817 . . . . . . . . 9  |-  2  e.  RR
9 1lt2 9888 . . . . . . . . 9  |-  1  <  2
10 rplogcl 19960 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  1  <  2 )  -> 
( log `  2
)  e.  RR+ )
118, 9, 10mp2an 653 . . . . . . . 8  |-  ( log `  2 )  e.  RR+
12 rpaddcl 10376 . . . . . . . 8  |-  ( ( ( 2  x.  b
)  e.  RR+  /\  ( log `  2 )  e.  RR+ )  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
137, 11, 12sylancl 643 . . . . . . 7  |-  ( b  e.  RR+  ->  ( ( 2  x.  b )  +  ( log `  2
) )  e.  RR+ )
1413ad2antlr 707 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  (
( 2  x.  b
)  +  ( log `  2 ) )  e.  RR+ )
15 id 19 . . . . . . . 8  |-  ( d  e.  RR+  ->  d  e.  RR+ )
16 eqid 2285 . . . . . . . 8  |-  ( ( 1  /  4 )  /  ( d  +  3 ) )  =  ( ( 1  / 
4 )  /  (
d  +  3 ) )
171, 15, 16pntibndlem1 20740 . . . . . . 7  |-  ( d  e.  RR+  ->  ( ( 1  /  4 )  /  ( d  +  3 ) )  e.  ( 0 (,) 1
) )
1817ad2antrr 706 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  (
( 1  /  4
)  /  ( d  +  3 ) )  e.  ( 0 (,) 1 ) )
19 elioore 10688 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR )
20 eliooord 10712 . . . . . . . . . . . . . . . 16  |-  ( e  e.  ( 0 (,) 1 )  ->  (
0  <  e  /\  e  <  1 ) )
2120simpld 445 . . . . . . . . . . . . . . 15  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  e )
2219, 21elrpd 10390 . . . . . . . . . . . . . 14  |-  ( e  e.  ( 0 (,) 1 )  ->  e  e.  RR+ )
2322rphalfcld 10404 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR+ )
2423rpred 10392 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  RR )
2523rpgt0d 10395 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  0  <  ( e  /  2
) )
26 1re 8839 . . . . . . . . . . . . . 14  |-  1  e.  RR
2726a1i 10 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  1  e.  RR )
28 rphalflt 10382 . . . . . . . . . . . . . 14  |-  ( e  e.  RR+  ->  ( e  /  2 )  < 
e )
2922, 28syl 15 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  e )
3020simprd 449 . . . . . . . . . . . . 13  |-  ( e  e.  ( 0 (,) 1 )  ->  e  <  1 )
3124, 19, 27, 29, 30lttrd 8979 . . . . . . . . . . . 12  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  <  1 )
32 0xr 8880 . . . . . . . . . . . . 13  |-  0  e.  RR*
33 rexr 8879 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  1  e.  RR* )
3426, 33ax-mp 8 . . . . . . . . . . . . 13  |-  1  e.  RR*
35 elioo2 10699 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  1  e.  RR* )  ->  (
( e  /  2
)  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) ) )
3632, 34, 35mp2an 653 . . . . . . . . . . . 12  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
e  /  2 )  e.  RR  /\  0  <  ( e  /  2
)  /\  ( e  /  2 )  <  1 ) )
3724, 25, 31, 36syl3anbrc 1136 . . . . . . . . . . 11  |-  ( e  e.  ( 0 (,) 1 )  ->  (
e  /  2 )  e.  ( 0 (,) 1 ) )
3837adantl 452 . . . . . . . . . 10  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( e  /  2 )  e.  ( 0 (,) 1
) )
39 oveq2 5868 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
b  /  f )  =  ( b  / 
( e  /  2
) ) )
4039fveq2d 5531 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( exp `  ( b  / 
f ) )  =  ( exp `  (
b  /  ( e  /  2 ) ) ) )
4140oveq1d 5875 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  (
( exp `  (
b  /  f ) ) [,)  +oo )  =  ( ( exp `  ( b  /  (
e  /  2 ) ) ) [,)  +oo ) )
42 breq2 4029 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( e  / 
2 )  ->  (
( abs `  (
( R `  n
)  /  n ) )  <_  f  <->  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) )
4342anbi2d 684 . . . . . . . . . . . . . . 15  |-  ( f  =  ( e  / 
2 )  ->  (
( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4443rexbidv 2566 . . . . . . . . . . . . . 14  |-  ( f  =  ( e  / 
2 )  ->  ( E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  <->  E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4544ralbidv 2565 . . . . . . . . . . . . 13  |-  ( f  =  ( e  / 
2 )  ->  ( A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  <  n  /\  n  <_  ( m  x.  v
) )  /\  ( abs `  ( ( R `
 n )  /  n ) )  <_ 
( e  /  2
) ) ) )
4641, 45raleqbidv 2750 . . . . . . . . . . . 12  |-  ( f  =  ( e  / 
2 )  ->  ( A. m  e.  (
( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  A. m  e.  ( ( exp `  ( b  /  ( e  / 
2 ) ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
4746rexbidv 2566 . . . . . . . . . . 11  |-  ( f  =  ( e  / 
2 )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  <->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) ) )
4847rspcv 2882 . . . . . . . . . 10  |-  ( ( e  /  2 )  e.  ( 0 (,) 1 )  ->  ( A. f  e.  (
0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  f ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  f
)  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) ) )
4938, 48syl 15 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  E. g  e.  RR+  A. m  e.  ( ( exp `  ( b  /  ( e  / 
2 ) ) ) [,)  +oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )
50 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
d  e.  RR+ )
5150ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
d  e.  RR+ )
52 simpllr 735 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d )
53 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
b  e.  RR+ )
5453ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
b  e.  RR+ )
55 eqid 2285 . . . . . . . . . . . 12  |-  ( exp `  ( b  /  (
e  /  2 ) ) )  =  ( exp `  ( b  /  ( e  / 
2 ) ) )
56 eqid 2285 . . . . . . . . . . . 12  |-  ( ( 2  x.  b )  +  ( log `  2
) )  =  ( ( 2  x.  b
)  +  ( log `  2 ) )
57 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
e  e.  ( 0 (,) 1 ) )
58 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  -> 
g  e.  RR+ )
59 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  A. m  e.  (
( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) ) )
601, 51, 16, 52, 54, 55, 56, 57, 58, 59pntibndlem3 20743 . . . . . . . . . . 11  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  (
g  e.  RR+  /\  A. m  e.  ( ( exp `  ( b  / 
( e  /  2
) ) ) [,) 
+oo ) A. v  e.  ( g (,)  +oo ) E. n  e.  NN  ( ( v  < 
n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  ( ( R `  n )  /  n
) )  <_  (
e  /  2 ) ) ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
6160expr 598 . . . . . . . . . 10  |-  ( ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  d
)  /\  e  e.  ( 0 (,) 1
) )  /\  g  e.  RR+ )  ->  ( A. m  e.  (
( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6261rexlimdva 2669 . . . . . . . . 9  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  ( e  /  2 ) ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  ( e  /  2 ) )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6349, 62syld 40 . . . . . . . 8  |-  ( ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d )  /\  e  e.  (
0 (,) 1 ) )  ->  ( A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6463ralrimdva 2635 . . . . . . 7  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  d )  -> 
( A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
6564impr 602 . . . . . 6  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
66 oveq1 5867 . . . . . . . . . . . 12  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
c  /  e )  =  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) )
6766fveq2d 5531 . . . . . . . . . . 11  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( exp `  ( c  / 
e ) )  =  ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) )
6867oveq1d 5875 . . . . . . . . . 10  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  (
( exp `  (
c  /  e ) ) [,)  +oo )  =  ( ( exp `  ( ( ( 2  x.  b )  +  ( log `  2
) )  /  e
) ) [,)  +oo ) )
6968raleqdv 2744 . . . . . . . . 9  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. k  e.  (
( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7069rexbidv 2566 . . . . . . . 8  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
7170ralbidv 2565 . . . . . . 7  |-  ( c  =  ( ( 2  x.  b )  +  ( log `  2
) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( c  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
72 oveq1 5867 . . . . . . . . . . . . . . . 16  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
l  x.  e )  =  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )
7372oveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
1  +  ( l  x.  e ) )  =  ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) ) )
7473oveq1d 5875 . . . . . . . . . . . . . 14  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( 1  +  ( l  x.  e ) )  x.  z )  =  ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) )
7574breq1d 4035 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) )
7675anbi2d 684 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) ) ) )
7774oveq2d 5876 . . . . . . . . . . . . 13  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) )  =  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) )
7877raleqdv 2744 . . . . . . . . . . . 12  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. u  e.  (
z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e  <->  A. u  e.  ( z [,] (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e )
)
7976, 78anbi12d 691 . . . . . . . . . . 11  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  (
( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8079rexbidv 2566 . . . . . . . . . 10  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( ( ( 1  / 
4 )  /  (
d  +  3 ) )  x.  e ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8180ralbidv 2565 . . . . . . . . 9  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
8281rexralbidv 2589 . . . . . . . 8  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8382ralbidv 2565 . . . . . . 7  |-  ( l  =  ( ( 1  /  4 )  / 
( d  +  3 ) )  ->  ( A. e  e.  (
0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( l  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( ( ( 2  x.  b
)  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( ( ( 1  /  4
)  /  ( d  +  3 ) )  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) ) )
8471, 83rspc2ev 2894 . . . . . 6  |-  ( ( ( ( 2  x.  b )  +  ( log `  2 ) )  e.  RR+  /\  (
( 1  /  4
)  /  ( d  +  3 ) )  e.  ( 0 (,) 1 )  /\  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
( ( 2  x.  b )  +  ( log `  2 ) )  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( ( ( 1  /  4 )  / 
( d  +  3 ) )  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( ( ( 1  /  4 )  /  ( d  +  3 ) )  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1 ) A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8514, 18, 65, 84syl3anc 1182 . . . . 5  |-  ( ( ( d  e.  RR+  /\  b  e.  RR+ )  /\  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
) )  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
8685ex 423 . . . 4  |-  ( ( d  e.  RR+  /\  b  e.  RR+ )  ->  (
( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) ) )
8786rexlimivv 2674 . . 3  |-  ( E. d  e.  RR+  E. b  e.  RR+  ( A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  d  /\  A. f  e.  ( 0 (,) 1 ) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
884, 87sylbir 204 . 2  |-  ( ( E. d  e.  RR+  A. x  e.  RR+  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
d  /\  E. b  e.  RR+  A. f  e.  ( 0 (,) 1
) E. g  e.  RR+  A. m  e.  ( ( exp `  (
b  /  f ) ) [,)  +oo ) A. v  e.  (
g (,)  +oo ) E. n  e.  NN  (
( v  <  n  /\  n  <_  ( m  x.  v ) )  /\  ( abs `  (
( R `  n
)  /  n ) )  <_  f )
)  ->  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e ) )
892, 3, 88mp2an 653 1  |-  E. c  e.  RR+  E. l  e.  ( 0 (,) 1
) A. e  e.  ( 0 (,) 1
) E. x  e.  RR+  A. k  e.  ( ( exp `  (
c  /  e ) ) [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( l  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( l  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   A.wral 2545   E.wrex 2546   class class class wbr 4025    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    +oocpnf 8866   RR*cxr 8868    < clt 8869    <_ cle 8870    - cmin 9039    / cdiv 9425   NNcn 9748   2c2 9797   3c3 9798   4c4 9799   RR+crp 10356   (,)cioo 10658   [,)cico 10660   [,]cicc 10661   abscabs 11721   expce 12345   logclog 19914  ψcchp 20332
This theorem is referenced by:  pnt3  20763
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-disj 3996  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-o1 11966  df-lo1 11967  df-sum 12161  df-ef 12351  df-e 12352  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-gcd 12688  df-prm 12761  df-pc 12892  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-cmp 17116  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916  df-cxp 19917  df-em 20289  df-cht 20336  df-vma 20337  df-chp 20338  df-ppi 20339  df-mu 20340
  Copyright terms: Public domain W3C validator