MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlem3 Unicode version

Theorem pntlem3 20752
Description: Lemma for pnt 20757. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlem3.1  |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
pntlem3.2  |-  ( ph  ->  C  e.  RR+ )
pntlem3.3  |-  ( (
ph  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
Assertion
Ref Expression
pntlem3  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Distinct variable groups:    x, t,
y, z, A    u, a, x, y, z    u, C    u, t, R, x, y, z    t, a   
u, T, x    ph, t, x, y, u, z
Dummy variables  s  w  p are mutually distinct and distinct from all other variables.
Allowed substitution hints:    ph( a)    A( u, a)    C( x, y, z, t, a)    R( a)    T( y, z, t, a)

Proof of Theorem pntlem3
StepHypRef Expression
1 rpssre 10359 . . . 4  |-  RR+  C_  RR
2 eqid 2284 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
32subcn 18364 . . . . . . . . . . . 12  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
43a1i 12 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
5 ssid 3198 . . . . . . . . . . . . 13  |-  CC  C_  CC
6 cncfmptid 18410 . . . . . . . . . . . . 13  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  (
p  e.  CC  |->  p )  e.  ( CC
-cn-> CC ) )
75, 5, 6mp2an 655 . . . . . . . . . . . 12  |-  ( p  e.  CC  |->  p )  e.  ( CC -cn-> CC )
87a1i 12 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  p )  e.  ( CC -cn-> CC ) )
92mulcn 18365 . . . . . . . . . . . . 13  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
109a1i 12 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
11 pntlem3.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  RR+ )
1211adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  C  e.  RR+ )
1312rpcnd 10387 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  C  e.  CC )
145a1i 12 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  CC  C_  CC )
15 cncfmptc 18409 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
p  e.  CC  |->  C )  e.  ( CC
-cn-> CC ) )
1613, 14, 14, 15syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  C )  e.  ( CC -cn-> CC ) )
17 3nn0 9978 . . . . . . . . . . . . . 14  |-  3  e.  NN0
182expcn 18370 . . . . . . . . . . . . . 14  |-  ( 3  e.  NN0  ->  ( p  e.  CC  |->  ( p ^ 3 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) ) )
1917, 18mp1i 13 . . . . . . . . . . . . 13  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p ^
3 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
202cncfcn1 18408 . . . . . . . . . . . . 13  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
2119, 20syl6eleqr 2375 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p ^
3 ) )  e.  ( CC -cn-> CC ) )
222, 10, 16, 21cncfmpt2f 18412 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( C  x.  ( p ^ 3 ) ) )  e.  ( CC -cn-> CC ) )
232, 4, 8, 22cncfmpt2f 18412 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) )  e.  ( CC -cn-> CC ) )
24 pntlem3.1 . . . . . . . . . . . . . . 15  |-  T  =  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t }
25 ssrab2 3259 . . . . . . . . . . . . . . 15  |-  { t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }  C_  ( 0 [,] A
)
2624, 25eqsstri 3209 . . . . . . . . . . . . . 14  |-  T  C_  ( 0 [,] A
)
27 0re 8833 . . . . . . . . . . . . . . 15  |-  0  e.  RR
28 pntlem3.a . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR+ )
2928rpred 10385 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
30 iccssre 10725 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0 [,] A
)  C_  RR )
3127, 29, 30sylancr 646 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0 [,] A
)  C_  RR )
3226, 31syl5ss 3191 . . . . . . . . . . . . 13  |-  ( ph  ->  T  C_  RR )
33 0xr 8873 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR*
3433a1i 12 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  e.  RR* )
3528rpxrd 10386 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  RR* )
3628rpge0d 10389 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <_  A )
37 ubicc2 10747 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  A  e.  RR*  /\  0  <_  A )  ->  A  e.  ( 0 [,] A
) )
3834, 35, 36, 37syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  ( 0 [,] A ) )
39 1rp 10353 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
40 1re 8832 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
41 elicopnf 10733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  RR  ->  (
z  e.  ( 1 [,)  +oo )  <->  ( z  e.  RR  /\  1  <_ 
z ) ) )
4240, 41mp1i 13 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( z  e.  ( 1 [,)  +oo )  <->  ( z  e.  RR  /\  1  <_  z ) ) )
4342simprbda 608 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  z  e.  RR )
4427a1i 12 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  0  e.  RR )
4540a1i 12 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  1  e.  RR )
46 0lt1 9291 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
4746a1i 12 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  0  <  1 )
4842simplbda 609 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  1  <_  z )
4944, 45, 43, 47, 48ltletrd 8971 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  0  <  z )
5043, 49elrpd 10383 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  z  e.  RR+ )
51 pntlem3.A . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
5251adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  A. x  e.  RR+  ( abs `  (
( R `  x
)  /  x ) )  <_  A )
53 fveq2 5485 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  ( R `  x )  =  ( R `  z ) )
54 id 21 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  x  =  z )
5553, 54oveq12d 5837 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
( R `  x
)  /  x )  =  ( ( R `
 z )  / 
z ) )
5655fveq2d 5489 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( abs `  ( ( R `
 x )  /  x ) )  =  ( abs `  (
( R `  z
)  /  z ) ) )
5756breq1d 4034 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( abs `  (
( R `  x
)  /  x ) )  <_  A  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  A
) )
5857rspcv 2881 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  RR+  ->  ( A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x
) )  <_  A  ->  ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
5950, 52, 58sylc 58 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  ( 1 [,)  +oo ) )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  <_  A )
6059ralrimiva 2627 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. z  e.  ( 1 [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  A )
61 oveq1 5826 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  1  ->  (
y [,)  +oo )  =  ( 1 [,)  +oo ) )
6261raleqdv 2743 . . . . . . . . . . . . . . . . 17  |-  ( y  =  1  ->  ( A. z  e.  (
y [,)  +oo ) ( abs `  ( ( R `  z )  /  z ) )  <_  A  <->  A. z  e.  ( 1 [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6362rspcev 2885 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR+  /\  A. z  e.  ( 1 [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  A
)  ->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
6439, 60, 63sylancr 646 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  A
)
65 breq2 4028 . . . . . . . . . . . . . . . . 17  |-  ( t  =  A  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  z )  /  z
) )  <_  A
) )
6665rexralbidv 2588 . . . . . . . . . . . . . . . 16  |-  ( t  =  A  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6766, 24elrab2 2926 . . . . . . . . . . . . . . 15  |-  ( A  e.  T  <->  ( A  e.  ( 0 [,] A
)  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  A )
)
6838, 64, 67sylanbrc 647 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  T )
69 ne0i 3462 . . . . . . . . . . . . . 14  |-  ( A  e.  T  ->  T  =/=  (/) )
7068, 69syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  T  =/=  (/) )
71 elicc2 10709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( t  e.  ( 0 [,] A )  <-> 
( t  e.  RR  /\  0  <_  t  /\  t  <_  A ) ) )
7227, 29, 71sylancr 646 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( t  e.  ( 0 [,] A )  <-> 
( t  e.  RR  /\  0  <_  t  /\  t  <_  A ) ) )
7372biimpa 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  (
t  e.  RR  /\  0  <_  t  /\  t  <_  A ) )
7473simp2d 970 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  0  <_  t )
7574a1d 24 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  ( 0 [,] A
) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
7675ralrimiva 2627 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
7724raleqi 2741 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  T  0  <_  w  <->  A. w  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t } 0  <_  w
)
78 breq2 4028 . . . . . . . . . . . . . . . . 17  |-  ( w  =  t  ->  (
0  <_  w  <->  0  <_  t ) )
7978ralrab2 2932 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
0  <_  w  <->  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
8077, 79bitri 242 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  T  0  <_  w  <->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  0  <_  t ) )
8176, 80sylibr 205 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. w  e.  T 
0  <_  w )
82 breq1 4027 . . . . . . . . . . . . . . . 16  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
8382ralbidv 2564 . . . . . . . . . . . . . . 15  |-  ( x  =  0  ->  ( A. w  e.  T  x  <_  w  <->  A. w  e.  T  0  <_  w ) )
8483rspcev 2885 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A. w  e.  T  0  <_  w )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w )
8527, 81, 84sylancr 646 . . . . . . . . . . . . 13  |-  ( ph  ->  E. x  e.  RR  A. w  e.  T  x  <_  w )
86 infmrcl 9728 . . . . . . . . . . . . 13  |-  ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w
)  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
8732, 70, 85, 86syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
8887recnd 8856 . . . . . . . . . . 11  |-  ( ph  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
8988adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
90 elrp 10351 . . . . . . . . . . . . . 14  |-  ( sup ( T ,  RR ,  `'  <  )  e.  RR+ 
<->  ( sup ( T ,  RR ,  `'  <  )  e.  RR  /\  0  <  sup ( T ,  RR ,  `'  <  ) ) )
9190biimpri 199 . . . . . . . . . . . . 13  |-  ( ( sup ( T ,  RR ,  `'  <  )  e.  RR  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR+ )
9287, 91sylan 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR+ )
9317nn0zi 10043 . . . . . . . . . . . 12  |-  3  e.  ZZ
94 rpexpcl 11116 . . . . . . . . . . . 12  |-  ( ( sup ( T ,  RR ,  `'  <  )  e.  RR+  /\  3  e.  ZZ )  ->  ( sup ( T ,  RR ,  `'  <  ) ^
3 )  e.  RR+ )
9592, 93, 94sylancl 645 . . . . . . . . . . 11  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( sup ( T ,  RR ,  `'  <  ) ^ 3 )  e.  RR+ )
9612, 95rpmulcld 10401 . . . . . . . . . 10  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  RR+ )
97 cncfi 18392 . . . . . . . . . 10  |-  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) )  e.  ( CC -cn-> CC )  /\  sup ( T ,  RR ,  `'  <  )  e.  CC  /\  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) )  e.  RR+ )  ->  E. s  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
9823, 89, 96, 97syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  E. s  e.  RR+  A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
9987ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
100 rphalfcl 10373 . . . . . . . . . . . . . 14  |-  ( s  e.  RR+  ->  ( s  /  2 )  e.  RR+ )
101100adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( s  /  2 )  e.  RR+ )
10299, 101ltaddrpd 10414 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) ) )
103101rpred 10385 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( s  /  2 )  e.  RR )
10499, 103readdcld 8857 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )
10599, 104ltnled 8961 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  < 
( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
106102, 105mpbid 203 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  sup ( T ,  RR ,  `'  <  ) )
107 ax-resscn 8789 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
10832, 107syl6ss 3192 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  C_  CC )
109108ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  C_  CC )
110 ssralv 3238 . . . . . . . . . . . . 13  |-  ( T 
C_  CC  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  -> 
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
111109, 110syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  -> 
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
11232ad2antrr 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  C_  RR )
113112sselda 3181 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  RR )
114104adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )
115113, 114ltnled 8961 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <->  -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
11687ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
117103adantr 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
s  /  2 )  e.  RR )
118116, 117resubcld 9206 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  e.  RR )
11999, 101ltsubrpd 10413 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  sup ( T ,  RR ,  `'  <  ) )
120119adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  sup ( T ,  RR ,  `'  <  ) )
12132ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  T  C_  RR )
12285ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
123 simpr 449 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  T )
124 infmrlb 9730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( T  C_  RR  /\  E. x  e.  RR  A. w  e.  T  x  <_  w  /\  u  e.  T
)  ->  sup ( T ,  RR ,  `'  <  )  <_  u
)
125121, 122, 123, 124syl3anc 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  u
)
126118, 116, 113, 120, 125ltletrd 8971 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  u
)
127113, 116, 117absdifltd 11910 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  <->  ( ( sup ( T ,  RR ,  `'  <  )  -  ( s  /  2
) )  <  u  /\  u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) ) ) ) )
128127biimprd 216 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( sup ( T ,  RR ,  `'  <  )  -  (
s  /  2 ) )  <  u  /\  u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  /  2 ) ) )
129126, 128mpand 658 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 ) ) )
130 rphalflt 10375 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  RR+  ->  ( s  /  2 )  < 
s )
131130ad2antlr 709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
s  /  2 )  <  s )
132113, 116resubcld 9206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  sup ( T ,  RR ,  `'  <  ) )  e.  RR )
133132recnd 8856 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  sup ( T ,  RR ,  `'  <  ) )  e.  CC )
134133abscld 11912 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  e.  RR )
135 rpre 10355 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  RR+  ->  s  e.  RR )
136135ad2antlr 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  s  e.  RR )
137 lttr 8894 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  e.  RR  /\  (
s  /  2 )  e.  RR  /\  s  e.  RR )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  /\  (
s  /  2 )  <  s )  -> 
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
138134, 117, 136, 137syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  /\  (
s  /  2 )  <  s )  -> 
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
139131, 138mpan2d 657 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  ( s  / 
2 )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
140129, 139syld 42 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  <  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
141115, 140sylbird 228 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( -.  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u  ->  ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s ) )
142141con1d 118 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( -.  ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
143113recnd 8856 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  u  e.  CC )
144 id 21 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  u  ->  p  =  u )
145 oveq1 5826 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  u  ->  (
p ^ 3 )  =  ( u ^
3 ) )
146145oveq2d 5835 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  u  ->  ( C  x.  ( p ^ 3 ) )  =  ( C  x.  ( u ^ 3 ) ) )
147144, 146oveq12d 5837 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  u  ->  (
p  -  ( C  x.  ( p ^
3 ) ) )  =  ( u  -  ( C  x.  (
u ^ 3 ) ) ) )
148 eqid 2284 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) )  =  ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) )
149 ovex 5844 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  -  ( C  x.  ( u ^ 3 ) ) )  e. 
_V
150147, 148, 149fvmpt 5563 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  CC  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  u
)  =  ( u  -  ( C  x.  ( u ^ 3 ) ) ) )
151143, 150syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  u
)  =  ( u  -  ( C  x.  ( u ^ 3 ) ) ) )
15289ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  CC )
153 id 21 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  p  =  sup ( T ,  RR ,  `'  <  ) )
154 oveq1 5826 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( p ^ 3 )  =  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )
155154oveq2d 5835 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( C  x.  ( p ^ 3 ) )  =  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )
156153, 155oveq12d 5837 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  sup ( T ,  RR ,  `'  <  )  ->  ( p  -  ( C  x.  ( p ^ 3 ) ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
157 ovex 5844 . . . . . . . . . . . . . . . . . . . . 21  |-  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  e.  _V
158156, 148, 157fvmpt 5563 . . . . . . . . . . . . . . . . . . . 20  |-  ( sup ( T ,  RR ,  `'  <  )  e.  CC  ->  ( (
p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
159152, 158syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) )  =  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
160151, 159oveq12d 5837 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) )  =  ( ( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) )
161160fveq2d 5489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  =  ( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) ) )
162161breq1d 4034 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  <->  ( abs `  ( ( u  -  ( C  x.  (
u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
16311rpred 10385 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  C  e.  RR )
164163ad3antrrr 712 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  C  e.  RR )
165 reexpcl 11114 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( u  e.  RR  /\  3  e.  NN0 )  -> 
( u ^ 3 )  e.  RR )
166113, 17, 165sylancl 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u ^ 3 )  e.  RR )
167164, 166remulcld 8858 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( u ^ 3 ) )  e.  RR )
168113, 167resubcld 9206 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  RR )
16917a1i 12 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  3  e.  NN0 )
170116, 169reexpcld 11256 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  ) ^
3 )  e.  RR )
171164, 170remulcld 8858 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  RR )
172116, 171resubcld 9206 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  e.  RR )
173168, 172, 171absdifltd 11910 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  <->  ( (
( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  <  ( u  -  ( C  x.  (
u ^ 3 ) ) )  /\  (
u  -  ( C  x.  ( u ^
3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) ) ) )
174171recnd 8856 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  e.  CC )
175152, 174npcand 9156 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  =  sup ( T ,  RR ,  `'  <  ) )
176175breq2d 4036 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  <->  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) ) )
177 simpll 732 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ph )
178 pntlem3.3 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
179177, 178sylan 459 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
u  -  ( C  x.  ( u ^
3 ) ) )  e.  T )
180 infmrlb 9730 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T  C_  RR  /\  E. x  e.  RR  A. w  e.  T  x  <_  w  /\  ( u  -  ( C  x.  (
u ^ 3 ) ) )  e.  T
)  ->  sup ( T ,  RR ,  `'  <  )  <_  (
u  -  ( C  x.  ( u ^
3 ) ) ) )
181121, 122, 179, 180syl3anc 1184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  (
u  -  ( C  x.  ( u ^
3 ) ) ) )
182116, 168lenltd 8960 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  <_ 
( u  -  ( C  x.  ( u ^ 3 ) ) )  <->  -.  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) ) )
183181, 182mpbid 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  -.  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  ) )
184183pm2.21d 100 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  sup ( T ,  RR ,  `'  <  )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
185176, 184sylbid 208 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  -> 
( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u ) )
186185adantld 455 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  <  ( u  -  ( C  x.  ( u ^ 3 ) ) )  /\  ( u  -  ( C  x.  ( u ^ 3 ) ) )  <  ( ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  +  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
187173, 186sylbid 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( u  -  ( C  x.  ( u ^ 3 ) ) )  -  ( sup ( T ,  RR ,  `'  <  )  -  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^
3 ) ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
188162, 187sylbid 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( abs `  (
( ( p  e.  CC  |->  ( p  -  ( C  x.  (
p ^ 3 ) ) ) ) `  u )  -  (
( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `  sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  u
) )
189142, 188jad 156 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  /\  u  e.  T )  ->  (
( ( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
190189ralimdva 2622 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  T  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
19170ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  T  =/=  (/) )
19285ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
193 infmrgelb 9729 . . . . . . . . . . . . . 14  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w )  /\  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  e.  RR )  ->  ( ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2
) )  <_  sup ( T ,  RR ,  `'  <  )  <->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
194112, 191, 192, 104, 193syl31anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( ( sup ( T ,  RR ,  `'  <  )  +  ( s  / 
2 ) )  <_  sup ( T ,  RR ,  `'  <  )  <->  A. u  e.  T  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  u )
)
195190, 194sylibrd 227 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  T  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
196111, 195syld 42 . . . . . . . . . . 11  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  ( A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) )  ->  ( sup ( T ,  RR ,  `'  <  )  +  ( s  /  2 ) )  <_  sup ( T ,  RR ,  `'  <  ) ) )
197106, 196mtod 170 . . . . . . . . . 10  |-  ( ( ( ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  /\  s  e.  RR+ )  ->  -.  A. u  e.  CC  (
( abs `  (
u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
198197nrexdv 2647 . . . . . . . . 9  |-  ( (
ph  /\  0  <  sup ( T ,  RR ,  `'  <  ) )  ->  -.  E. s  e.  RR+  A. u  e.  CC  ( ( abs `  ( u  -  sup ( T ,  RR ,  `'  <  ) ) )  <  s  ->  ( abs `  ( ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^
3 ) ) ) ) `  u )  -  ( ( p  e.  CC  |->  ( p  -  ( C  x.  ( p ^ 3 ) ) ) ) `
 sup ( T ,  RR ,  `'  <  ) ) ) )  <  ( C  x.  ( sup ( T ,  RR ,  `'  <  ) ^ 3 ) ) ) )
19998, 198pm2.65da 561 . . . . . . . 8  |-  ( ph  ->  -.  0  <  sup ( T ,  RR ,  `'  <  ) )
200199adantr 453 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  -.  0  <  sup ( T ,  RR ,  `'  <  ) )
20132adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  T  C_  RR )
20270adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  T  =/=  (/) )
20385adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. x  e.  RR  A. w  e.  T  x  <_  w
)
204135adantl 454 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  s  e.  RR )
205 infmrgelb 9729 . . . . . . . . . 10  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. x  e.  RR  A. w  e.  T  x  <_  w )  /\  s  e.  RR )  ->  (
s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. w  e.  T  s  <_  w ) )
206201, 202, 203, 204, 205syl31anc 1187 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. w  e.  T  s  <_  w ) )
20724raleqi 2741 . . . . . . . . . 10  |-  ( A. w  e.  T  s  <_  w  <->  A. w  e.  {
t  e.  ( 0 [,] A )  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t } s  <_  w
)
208 breq2 4028 . . . . . . . . . . 11  |-  ( w  =  t  ->  (
s  <_  w  <->  s  <_  t ) )
209208ralrab2 2932 . . . . . . . . . 10  |-  ( A. w  e.  { t  e.  ( 0 [,] A
)  |  E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t }
s  <_  w  <->  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
210207, 209bitri 242 . . . . . . . . 9  |-  ( A. w  e.  T  s  <_  w  <->  A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
211206, 210syl6bb 254 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  <->  A. t  e.  (
0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) ) )
212 rpgt0 10360 . . . . . . . . . 10  |-  ( s  e.  RR+  ->  0  < 
s )
213212adantl 454 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  0  <  s )
21427a1i 12 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  0  e.  RR )
21587adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  RR+ )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
216 ltletr 8908 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  s  e.  RR  /\  sup ( T ,  RR ,  `'  <  )  e.  RR )  ->  ( ( 0  <  s  /\  s  <_  sup ( T ,  RR ,  `'  <  ) )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
217214, 204, 215, 216syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( (
0  <  s  /\  s  <_  sup ( T ,  RR ,  `'  <  ) )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
218213, 217mpand 658 . . . . . . . 8  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( s  <_  sup ( T ,  RR ,  `'  <  )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
219211, 218sylbird 228 . . . . . . 7  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( A. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  ->  s  <_  t )  ->  0  <  sup ( T ,  RR ,  `'  <  ) ) )
220200, 219mtod 170 . . . . . 6  |-  ( (
ph  /\  s  e.  RR+ )  ->  -.  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
221 rexanali 2590 . . . . . 6  |-  ( E. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  /\  -.  s  <_  t
)  <->  -.  A. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  s  <_  t ) )
222220, 221sylibr 205 . . . . 5  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. t  e.  ( 0 [,] A
) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  /\  -.  s  <_  t ) )
223 fveq2 5485 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( R `  z )  =  ( R `  x ) )
224 id 21 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  z  =  x )
225223, 224oveq12d 5837 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( R `  z
)  /  z )  =  ( ( R `
 x )  /  x ) )
226225fveq2d 5489 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  x
)  /  x ) ) )
227226breq1d 4034 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  t  <->  ( abs `  ( ( R `  x )  /  x
) )  <_  t
) )
228227cbvralv 2765 . . . . . . . . . . 11  |-  ( A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  <->  A. x  e.  ( y [,)  +oo ) ( abs `  ( ( R `  x )  /  x
) )  <_  t
)
229 rpre 10355 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e.  RR )
230229ad2antll 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  RR )
231 simprl 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  <_  x )
232 simplr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  e.  RR+ )
233232rpred 10385 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  y  e.  RR )
234 elicopnf 10733 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR  ->  (
x  e.  ( y [,)  +oo )  <->  ( x  e.  RR  /\  y  <_  x ) ) )
235233, 234syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( x  e.  ( y [,)  +oo ) 
<->  ( x  e.  RR  /\  y  <_  x )
) )
236230, 231, 235mpbir2and 890 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  ( y [,)  +oo ) )
237 pntlem3.r . . . . . . . . . . . . . . . . . . . . . 22  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
238237pntrval 20705 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  ( R `
 x )  =  ( (ψ `  x
)  -  x ) )
239238ad2antll 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( R `  x )  =  ( (ψ `  x )  -  x ) )
240239oveq1d 5834 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( R `  x )  /  x )  =  ( ( (ψ `  x
)  -  x )  /  x ) )
241 chpcl 20356 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
242230, 241syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  (ψ `  x
)  e.  RR )
243242recnd 8856 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  (ψ `  x
)  e.  CC )
244 rpcn 10357 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  x  e.  CC )
245244ad2antll 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  e.  CC )
246 rpne0 10364 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  x  =/=  0 )
247246ad2antll 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  x  =/=  0 )
248243, 245, 245, 247divsubdird 9570 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  -  x )  /  x
)  =  ( ( (ψ `  x )  /  x )  -  (
x  /  x ) ) )
249245, 247dividd 9529 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( x  /  x )  =  1 )
250249oveq2d 5835 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  (
x  /  x ) )  =  ( ( (ψ `  x )  /  x )  -  1 ) )
251240, 248, 2503eqtrrd 2321 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  =  ( ( R `  x )  /  x ) )
252251fveq2d 5489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  =  ( abs `  ( ( R `  x )  /  x
) ) )
253252breq1d 4034 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <_  t  <->  ( abs `  ( ( R `  x )  /  x
) )  <_  t
) )
254 simprr 735 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  -.  s  <_  t )
255254ad2antrr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  -.  s  <_  t )
25631ad2antrr 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  ( 0 [,] A )  C_  RR )
257256ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( 0 [,] A )  C_  RR )
258 simplrl 738 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
t  e.  ( 0 [,] A ) )
259258adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  e.  ( 0 [,] A
) )
260257, 259sseldd 3182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  e.  RR )
261 simpllr 737 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
s  e.  RR+ )
262261adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  s  e.  RR+ )
263262rpred 10385 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  s  e.  RR )
264260, 263ltnled 8961 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( t  <  s  <->  -.  s  <_  t ) )
265255, 264mpbird 225 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  t  <  s )
266229, 241syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
267 rerpdivcl 10376 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (ψ `  x )  e.  RR  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
268266, 267mpancom 652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  RR )
269268ad2antll 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (ψ `  x )  /  x
)  e.  RR )
270 resubcl 9106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (ψ `  x
)  /  x )  e.  RR  /\  1  e.  RR )  ->  (
( (ψ `  x
)  /  x )  -  1 )  e.  RR )
271269, 40, 270sylancl 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  e.  RR )
272271recnd 8856 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
(ψ `  x )  /  x )  -  1 )  e.  CC )
273272abscld 11912 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  e.  RR )
274 lelttr 8907 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  e.  RR  /\  t  e.  RR  /\  s  e.  RR )  ->  (
( ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <_  t  /\  t  <  s )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
275273, 260, 263, 274syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <_  t  /\  t  <  s )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
276265, 275mpan2d 657 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <_  t  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) )
277253, 276sylbird 228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( ( abs `  ( ( R `
 x )  /  x ) )  <_ 
t  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
278236, 277embantd 52 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  /\  ( y  <_  x  /\  x  e.  RR+ )
)  ->  ( (
x  e.  ( y [,)  +oo )  ->  ( abs `  ( ( R `
 x )  /  x ) )  <_ 
t )  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
279278exp32 590 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( y  <_  x  ->  ( x  e.  RR+  ->  ( ( x  e.  ( y [,)  +oo )  ->  ( abs `  (
( R `  x
)  /  x ) )  <_  t )  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) ) )
280279com24 83 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( ( x  e.  ( y [,)  +oo )  ->  ( abs `  (
( R `  x
)  /  x ) )  <_  t )  ->  ( x  e.  RR+  ->  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) ) )
281280ralimdv2 2624 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( A. x  e.  ( y [,)  +oo ) ( abs `  (
( R `  x
)  /  x ) )  <_  t  ->  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
282228, 281syl5bi 210 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  ( t  e.  ( 0 [,] A )  /\  -.  s  <_ 
t ) )  /\  y  e.  RR+ )  -> 
( A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
283282reximdva 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  (
t  e.  ( 0 [,] A )  /\  -.  s  <_  t ) )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
284283anassrs 631 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A ) )  /\  -.  s  <_ 
t )  ->  ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  (
( R `  z
)  /  z ) )  <_  t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
285284impancom 429 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A ) )  /\  E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t )  ->  ( -.  s  <_ 
t  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
286285expimpd 588 . . . . . 6  |-  ( ( ( ph  /\  s  e.  RR+ )  /\  t  e.  ( 0 [,] A
) )  ->  (
( E. y  e.  RR+  A. z  e.  ( y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  t  /\  -.  s  <_  t )  ->  E. y  e.  RR+  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
287286rexlimdva 2668 . . . . 5  |-  ( (
ph  /\  s  e.  RR+ )  ->  ( E. t  e.  ( 0 [,] A ) ( E. y  e.  RR+  A. z  e.  ( y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  t  /\  -.  s  <_  t
)  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
288222, 287mpd 16 . . . 4  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) )
289 ssrexv 3239 . . . 4  |-  ( RR+  C_  RR  ->  ( E. y  e.  RR+  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s )  ->  E. y  e.  RR  A. x  e.  RR+  (
y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x )  -  1 ) )  <  s
) ) )
2901, 288, 289mpsyl 61 . . 3  |-  ( (
ph  /\  s  e.  RR+ )  ->  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) )
291290ralrimiva 2627 . 2  |-  ( ph  ->  A. s  e.  RR+  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  ( ( (ψ `  x )  /  x
)  -  1 ) )  <  s ) )
292268recnd 8856 . . . . 5  |-  ( x  e.  RR+  ->  ( (ψ `  x )  /  x
)  e.  CC )
293292rgen 2609 . . . 4  |-  A. x  e.  RR+  ( (ψ `  x )  /  x
)  e.  CC
294293a1i 12 . . 3  |-  ( ph  ->  A. x  e.  RR+  ( (ψ `  x )  /  x )  e.  CC )
2951a1i 12 . . 3  |-  ( ph  -> 
RR+  C_  RR )
296 ax-1cn 8790 . . . 4  |-  1  e.  CC
297296a1i 12 . . 3  |-  ( ph  ->  1  e.  CC )
298294, 295, 297rlim2 11964 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  ~~> r  1  <->  A. s  e.  RR+  E. y  e.  RR  A. x  e.  RR+  ( y  <_  x  ->  ( abs `  (
( (ψ `  x
)  /  x )  -  1 ) )  <  s ) ) )
299291, 298mpbird 225 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  ~~> r  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   {crab 2548    C_ wss 3153   (/)c0 3456   class class class wbr 4024    e. cmpt 4078   `'ccnv 4687   ` cfv 5221  (class class class)co 5819   supcsup 7188   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   2c2 9790   3c3 9791   NN0cn0 9960   ZZcz 10019   RR+crp 10349   [,)cico 10652   [,]cicc 10653   ^cexp 11098   abscabs 11713    ~~> r crli 11953   TopOpenctopn 13320  ℂfldccnfld 16371    Cn ccn 16948    tX ctx 17249   -cn->ccncf 18374  ψcchp 20324
This theorem is referenced by:  pntleml  20754
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-prm 12753  df-pc 12884  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-vma 20329  df-chp 20330
  Copyright terms: Public domain W3C validator