MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Unicode version

Theorem pntlema 20672
Description: Lemma for pnt 20690. Closure for the constants used in the proof. The mammoth expression  W is a number large enough to satisfy all the lower bounds needed for  Z. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Y is x2,  X is x1,  C is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and  W is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
Assertion
Ref Expression
pntlema  |-  ( ph  ->  W  e.  RR+ )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)    W( a)    X( a)    Y( a)

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
2 pntlem1.y . . . . . 6  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
32simpld 447 . . . . 5  |-  ( ph  ->  Y  e.  RR+ )
4 4nn 9811 . . . . . . 7  |-  4  e.  NN
5 nnrp 10295 . . . . . . 7  |-  ( 4  e.  NN  ->  4  e.  RR+ )
64, 5ax-mp 10 . . . . . 6  |-  4  e.  RR+
7 pntlem1.r . . . . . . . . 9  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
8 pntlem1.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
9 pntlem1.b . . . . . . . . 9  |-  ( ph  ->  B  e.  RR+ )
10 pntlem1.l . . . . . . . . 9  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
11 pntlem1.d . . . . . . . . 9  |-  D  =  ( A  +  1 )
12 pntlem1.f . . . . . . . . 9  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
137, 8, 9, 10, 11, 12pntlemd 20670 . . . . . . . 8  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
1413simp1d 972 . . . . . . 7  |-  ( ph  ->  L  e.  RR+ )
15 pntlem1.u . . . . . . . . 9  |-  ( ph  ->  U  e.  RR+ )
16 pntlem1.u2 . . . . . . . . 9  |-  ( ph  ->  U  <_  A )
17 pntlem1.e . . . . . . . . 9  |-  E  =  ( U  /  D
)
18 pntlem1.k . . . . . . . . 9  |-  K  =  ( exp `  ( B  /  E ) )
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 20671 . . . . . . . 8  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
2019simp1d 972 . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
2114, 20rpmulcld 10338 . . . . . 6  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
22 rpdivcl 10308 . . . . . 6  |-  ( ( 4  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
4  /  ( L  x.  E ) )  e.  RR+ )
236, 21, 22sylancr 647 . . . . 5  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  e.  RR+ )
243, 23rpaddcld 10337 . . . 4  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+ )
25 2z 9986 . . . 4  |-  2  e.  ZZ
26 rpexpcl 11053 . . . 4  |-  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  e.  RR+ )
2724, 25, 26sylancl 646 . . 3  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  RR+ )
28 pntlem1.x . . . . . . 7  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
2928simpld 447 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
3019simp2d 973 . . . . . . 7  |-  ( ph  ->  K  e.  RR+ )
31 rpexpcl 11053 . . . . . . 7  |-  ( ( K  e.  RR+  /\  2  e.  ZZ )  ->  ( K ^ 2 )  e.  RR+ )
3230, 25, 31sylancl 646 . . . . . 6  |-  ( ph  ->  ( K ^ 2 )  e.  RR+ )
3329, 32rpmulcld 10338 . . . . 5  |-  ( ph  ->  ( X  x.  ( K ^ 2 ) )  e.  RR+ )
344nnzi 9979 . . . . 5  |-  4  e.  ZZ
35 rpexpcl 11053 . . . . 5  |-  ( ( ( X  x.  ( K ^ 2 ) )  e.  RR+  /\  4  e.  ZZ )  ->  (
( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
3633, 34, 35sylancl 646 . . . 4  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
37 3nn0 9915 . . . . . . . . . . 11  |-  3  e.  NN0
38 2nn 9809 . . . . . . . . . . 11  |-  2  e.  NN
3937, 38decnncl 10069 . . . . . . . . . 10  |- ; 3 2  e.  NN
40 nnrp 10295 . . . . . . . . . 10  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
4139, 40ax-mp 10 . . . . . . . . 9  |- ; 3 2  e.  RR+
42 rpmulcl 10307 . . . . . . . . 9  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
4341, 9, 42sylancr 647 . . . . . . . 8  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
4419simp3d 974 . . . . . . . . . 10  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
4544simp3d 974 . . . . . . . . 9  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
46 rpexpcl 11053 . . . . . . . . . . 11  |-  ( ( E  e.  RR+  /\  2  e.  ZZ )  ->  ( E ^ 2 )  e.  RR+ )
4720, 25, 46sylancl 646 . . . . . . . . . 10  |-  ( ph  ->  ( E ^ 2 )  e.  RR+ )
4814, 47rpmulcld 10338 . . . . . . . . 9  |-  ( ph  ->  ( L  x.  ( E ^ 2 ) )  e.  RR+ )
4945, 48rpmulcld 10338 . . . . . . . 8  |-  ( ph  ->  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  RR+ )
5043, 49rpdivcld 10339 . . . . . . 7  |-  ( ph  ->  ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  e.  RR+ )
51 3nn 9810 . . . . . . . . . 10  |-  3  e.  NN
52 nnrp 10295 . . . . . . . . . 10  |-  ( 3  e.  NN  ->  3  e.  RR+ )
5351, 52ax-mp 10 . . . . . . . . 9  |-  3  e.  RR+
54 rpmulcl 10307 . . . . . . . . 9  |-  ( ( U  e.  RR+  /\  3  e.  RR+ )  ->  ( U  x.  3 )  e.  RR+ )
5515, 53, 54sylancl 646 . . . . . . . 8  |-  ( ph  ->  ( U  x.  3 )  e.  RR+ )
56 pntlem1.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
5755, 56rpaddcld 10337 . . . . . . 7  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  RR+ )
5850, 57rpmulcld 10338 . . . . . 6  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR+ )
5958rpred 10322 . . . . 5  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR )
6059rpefcld 12312 . . . 4  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  e.  RR+ )
6136, 60rpaddcld 10337 . . 3  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  RR+ )
6227, 61rpaddcld 10337 . 2  |-  ( ph  ->  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )  e.  RR+ )
631, 62syl5eqel 2340 1  |-  ( ph  ->  W  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3963    e. cmpt 4017   ` cfv 4638  (class class class)co 5757   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675    < clt 8800    <_ cle 8801    - cmin 8970    / cdiv 9356   NNcn 9679   2c2 9728   3c3 9729   4c4 9730   ZZcz 9956  ;cdc 10056   RR+crp 10286   (,)cioo 10587   ^cexp 11035   expce 12270  ψcchp 20257
This theorem is referenced by:  pntlemb  20673  pntleme  20684
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-pm 6708  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-rp 10287  df-ioo 10591  df-ico 10593  df-fz 10714  df-fzo 10802  df-fl 10856  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-sum 12089  df-ef 12276
  Copyright terms: Public domain W3C validator