MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Unicode version

Theorem pntlema 21273
Description: Lemma for pnt 21291. Closure for the constants used in the proof. The mammoth expression  W is a number large enough to satisfy all the lower bounds needed for  Z. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Y is x2,  X is x1,  C is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and  W is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
Assertion
Ref Expression
pntlema  |-  ( ph  ->  W  e.  RR+ )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)    W( a)    X( a)    Y( a)

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
2 pntlem1.y . . . . . 6  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
32simpld 446 . . . . 5  |-  ( ph  ->  Y  e.  RR+ )
4 4nn 10119 . . . . . . 7  |-  4  e.  NN
5 nnrp 10605 . . . . . . 7  |-  ( 4  e.  NN  ->  4  e.  RR+ )
64, 5ax-mp 8 . . . . . 6  |-  4  e.  RR+
7 pntlem1.r . . . . . . . . 9  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
8 pntlem1.a . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
9 pntlem1.b . . . . . . . . 9  |-  ( ph  ->  B  e.  RR+ )
10 pntlem1.l . . . . . . . . 9  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
11 pntlem1.d . . . . . . . . 9  |-  D  =  ( A  +  1 )
12 pntlem1.f . . . . . . . . 9  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
137, 8, 9, 10, 11, 12pntlemd 21271 . . . . . . . 8  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
1413simp1d 969 . . . . . . 7  |-  ( ph  ->  L  e.  RR+ )
15 pntlem1.u . . . . . . . . 9  |-  ( ph  ->  U  e.  RR+ )
16 pntlem1.u2 . . . . . . . . 9  |-  ( ph  ->  U  <_  A )
17 pntlem1.e . . . . . . . . 9  |-  E  =  ( U  /  D
)
18 pntlem1.k . . . . . . . . 9  |-  K  =  ( exp `  ( B  /  E ) )
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 21272 . . . . . . . 8  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
2019simp1d 969 . . . . . . 7  |-  ( ph  ->  E  e.  RR+ )
2114, 20rpmulcld 10648 . . . . . 6  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
22 rpdivcl 10618 . . . . . 6  |-  ( ( 4  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
4  /  ( L  x.  E ) )  e.  RR+ )
236, 21, 22sylancr 645 . . . . 5  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  e.  RR+ )
243, 23rpaddcld 10647 . . . 4  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+ )
25 2z 10296 . . . 4  |-  2  e.  ZZ
26 rpexpcl 11383 . . . 4  |-  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  e.  RR+ )
2724, 25, 26sylancl 644 . . 3  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  RR+ )
28 pntlem1.x . . . . . . 7  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
2928simpld 446 . . . . . 6  |-  ( ph  ->  X  e.  RR+ )
3019simp2d 970 . . . . . . 7  |-  ( ph  ->  K  e.  RR+ )
31 rpexpcl 11383 . . . . . . 7  |-  ( ( K  e.  RR+  /\  2  e.  ZZ )  ->  ( K ^ 2 )  e.  RR+ )
3230, 25, 31sylancl 644 . . . . . 6  |-  ( ph  ->  ( K ^ 2 )  e.  RR+ )
3329, 32rpmulcld 10648 . . . . 5  |-  ( ph  ->  ( X  x.  ( K ^ 2 ) )  e.  RR+ )
344nnzi 10289 . . . . 5  |-  4  e.  ZZ
35 rpexpcl 11383 . . . . 5  |-  ( ( ( X  x.  ( K ^ 2 ) )  e.  RR+  /\  4  e.  ZZ )  ->  (
( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
3633, 34, 35sylancl 644 . . . 4  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
37 3nn0 10223 . . . . . . . . . . 11  |-  3  e.  NN0
38 2nn 10117 . . . . . . . . . . 11  |-  2  e.  NN
3937, 38decnncl 10379 . . . . . . . . . 10  |- ; 3 2  e.  NN
40 nnrp 10605 . . . . . . . . . 10  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
4139, 40ax-mp 8 . . . . . . . . 9  |- ; 3 2  e.  RR+
42 rpmulcl 10617 . . . . . . . . 9  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
4341, 9, 42sylancr 645 . . . . . . . 8  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
4419simp3d 971 . . . . . . . . . 10  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
4544simp3d 971 . . . . . . . . 9  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
46 rpexpcl 11383 . . . . . . . . . . 11  |-  ( ( E  e.  RR+  /\  2  e.  ZZ )  ->  ( E ^ 2 )  e.  RR+ )
4720, 25, 46sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  ( E ^ 2 )  e.  RR+ )
4814, 47rpmulcld 10648 . . . . . . . . 9  |-  ( ph  ->  ( L  x.  ( E ^ 2 ) )  e.  RR+ )
4945, 48rpmulcld 10648 . . . . . . . 8  |-  ( ph  ->  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  RR+ )
5043, 49rpdivcld 10649 . . . . . . 7  |-  ( ph  ->  ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  e.  RR+ )
51 3nn 10118 . . . . . . . . . 10  |-  3  e.  NN
52 nnrp 10605 . . . . . . . . . 10  |-  ( 3  e.  NN  ->  3  e.  RR+ )
5351, 52ax-mp 8 . . . . . . . . 9  |-  3  e.  RR+
54 rpmulcl 10617 . . . . . . . . 9  |-  ( ( U  e.  RR+  /\  3  e.  RR+ )  ->  ( U  x.  3 )  e.  RR+ )
5515, 53, 54sylancl 644 . . . . . . . 8  |-  ( ph  ->  ( U  x.  3 )  e.  RR+ )
56 pntlem1.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
5755, 56rpaddcld 10647 . . . . . . 7  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  RR+ )
5850, 57rpmulcld 10648 . . . . . 6  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR+ )
5958rpred 10632 . . . . 5  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR )
6059rpefcld 12689 . . . 4  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  e.  RR+ )
6136, 60rpaddcld 10647 . . 3  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  RR+ )
6227, 61rpaddcld 10647 . 2  |-  ( ph  ->  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )  e.  RR+ )
631, 62syl5eqel 2514 1  |-  ( ph  ->  W  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4199    e. cmpt 4253   ` cfv 5440  (class class class)co 6067   0cc0 8974   1c1 8975    + caddc 8977    x. cmul 8979    < clt 9104    <_ cle 9105    - cmin 9275    / cdiv 9661   NNcn 9984   2c2 10033   3c3 10034   4c4 10035   ZZcz 10266  ;cdc 10366   RR+crp 10596   (,)cioo 10900   ^cexp 11365   expce 12647  ψcchp 20858
This theorem is referenced by:  pntlemb  21274  pntleme  21285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-inf2 7580  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051  ax-pre-sup 9052  ax-addf 9053  ax-mulf 9054
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-se 4529  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-isom 5449  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-1o 6710  df-oadd 6714  df-er 6891  df-pm 7007  df-en 7096  df-dom 7097  df-sdom 7098  df-fin 7099  df-sup 7432  df-oi 7463  df-card 7810  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-nn 9985  df-2 10042  df-3 10043  df-4 10044  df-5 10045  df-6 10046  df-7 10047  df-8 10048  df-9 10049  df-10 10050  df-n0 10206  df-z 10267  df-dec 10367  df-uz 10473  df-rp 10597  df-ioo 10904  df-ico 10906  df-fz 11028  df-fzo 11119  df-fl 11185  df-seq 11307  df-exp 11366  df-fac 11550  df-bc 11577  df-hash 11602  df-shft 11865  df-cj 11887  df-re 11888  df-im 11889  df-sqr 12023  df-abs 12024  df-limsup 12248  df-clim 12265  df-rlim 12266  df-sum 12463  df-ef 12653
  Copyright terms: Public domain W3C validator