MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemb Unicode version

Theorem pntlemb 20708
Description: Lemma for pnt 20725. Unpack all the lower bounds contained in  W, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  Z is x. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
Assertion
Ref Expression
pntlemb  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    K( a)    L( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemb
StepHypRef Expression
1 pntlem1.z . . . . 5  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
2 pntlem1.r . . . . . . . 8  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
3 pntlem1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
4 pntlem1.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR+ )
5 pntlem1.l . . . . . . . 8  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
6 pntlem1.d . . . . . . . 8  |-  D  =  ( A  +  1 )
7 pntlem1.f . . . . . . . 8  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
8 pntlem1.u . . . . . . . 8  |-  ( ph  ->  U  e.  RR+ )
9 pntlem1.u2 . . . . . . . 8  |-  ( ph  ->  U  <_  A )
10 pntlem1.e . . . . . . . 8  |-  E  =  ( U  /  D
)
11 pntlem1.k . . . . . . . 8  |-  K  =  ( exp `  ( B  /  E ) )
12 pntlem1.y . . . . . . . 8  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
13 pntlem1.x . . . . . . . 8  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
14 pntlem1.c . . . . . . . 8  |-  ( ph  ->  C  e.  RR+ )
15 pntlem1.w . . . . . . . 8  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
162, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlema 20707 . . . . . . 7  |-  ( ph  ->  W  e.  RR+ )
1716rpred 10357 . . . . . 6  |-  ( ph  ->  W  e.  RR )
18 pnfxr 10422 . . . . . 6  |-  +oo  e.  RR*
19 elico2 10680 . . . . . 6  |-  ( ( W  e.  RR  /\  +oo 
e.  RR* )  ->  ( Z  e.  ( W [,)  +oo )  <->  ( Z  e.  RR  /\  W  <_  Z  /\  Z  <  +oo ) ) )
2017, 18, 19sylancl 646 . . . . 5  |-  ( ph  ->  ( Z  e.  ( W [,)  +oo )  <->  ( Z  e.  RR  /\  W  <_  Z  /\  Z  <  +oo ) ) )
211, 20mpbid 203 . . . 4  |-  ( ph  ->  ( Z  e.  RR  /\  W  <_  Z  /\  Z  <  +oo ) )
2221simp1d 972 . . 3  |-  ( ph  ->  Z  e.  RR )
2321simp2d 973 . . 3  |-  ( ph  ->  W  <_  Z )
2422, 16, 23rpgecld 10392 . 2  |-  ( ph  ->  Z  e.  RR+ )
25 1re 8805 . . . . . . 7  |-  1  e.  RR
2625a1i 12 . . . . . 6  |-  ( ph  ->  1  e.  RR )
27 ere 12332 . . . . . . 7  |-  _e  e.  RR
2827a1i 12 . . . . . 6  |-  ( ph  ->  _e  e.  RR )
2924rpsqrcld 11859 . . . . . . 7  |-  ( ph  ->  ( sqr `  Z
)  e.  RR+ )
3029rpred 10357 . . . . . 6  |-  ( ph  ->  ( sqr `  Z
)  e.  RR )
31 1lt2 9853 . . . . . . . 8  |-  1  <  2
32 egt2lt3 12446 . . . . . . . . 9  |-  ( 2  <  _e  /\  _e  <  3 )
3332simpli 446 . . . . . . . 8  |-  2  <  _e
34 2re 9783 . . . . . . . . 9  |-  2  e.  RR
3525, 34, 27lttri 8913 . . . . . . . 8  |-  ( ( 1  <  2  /\  2  <  _e )  ->  1  <  _e )
3631, 33, 35mp2an 656 . . . . . . 7  |-  1  <  _e
3736a1i 12 . . . . . 6  |-  ( ph  ->  1  <  _e )
38 4re 9787 . . . . . . . 8  |-  4  e.  RR
3938a1i 12 . . . . . . 7  |-  ( ph  ->  4  e.  RR )
4032simpri 450 . . . . . . . . 9  |-  _e  <  3
41 3lt4 9856 . . . . . . . . 9  |-  3  <  4
42 3re 9785 . . . . . . . . . 10  |-  3  e.  RR
4327, 42, 38lttri 8913 . . . . . . . . 9  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
4440, 41, 43mp2an 656 . . . . . . . 8  |-  _e  <  4
4544a1i 12 . . . . . . 7  |-  ( ph  ->  _e  <  4 )
46 4nn 9846 . . . . . . . . . . 11  |-  4  e.  NN
47 nnrp 10330 . . . . . . . . . . 11  |-  ( 4  e.  NN  ->  4  e.  RR+ )
4846, 47ax-mp 10 . . . . . . . . . 10  |-  4  e.  RR+
492, 3, 4, 5, 6, 7pntlemd 20705 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
5049simp1d 972 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  RR+ )
512, 3, 4, 5, 6, 7, 8, 9, 10, 11pntlemc 20706 . . . . . . . . . . . 12  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
5251simp1d 972 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  RR+ )
5350, 52rpmulcld 10373 . . . . . . . . . 10  |-  ( ph  ->  ( L  x.  E
)  e.  RR+ )
54 rpdivcl 10343 . . . . . . . . . 10  |-  ( ( 4  e.  RR+  /\  ( L  x.  E )  e.  RR+ )  ->  (
4  /  ( L  x.  E ) )  e.  RR+ )
5548, 53, 54sylancr 647 . . . . . . . . 9  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  e.  RR+ )
5655rpred 10357 . . . . . . . 8  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  e.  RR )
5753rpred 10357 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  x.  E
)  e.  RR )
5852rpred 10357 . . . . . . . . . . . 12  |-  ( ph  ->  E  e.  RR )
5950rpred 10357 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  e.  RR )
60 eliooord 10676 . . . . . . . . . . . . . . . 16  |-  ( L  e.  ( 0 (,) 1 )  ->  (
0  <  L  /\  L  <  1 ) )
615, 60syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  <  L  /\  L  <  1
) )
6261simprd 451 . . . . . . . . . . . . . 14  |-  ( ph  ->  L  <  1 )
6359, 26, 52, 62ltmul1dd 10408 . . . . . . . . . . . . 13  |-  ( ph  ->  ( L  x.  E
)  <  ( 1  x.  E ) )
6452rpcnd 10359 . . . . . . . . . . . . . 14  |-  ( ph  ->  E  e.  CC )
6564mulid2d 8821 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  x.  E
)  =  E )
6663, 65breqtrd 4021 . . . . . . . . . . . 12  |-  ( ph  ->  ( L  x.  E
)  <  E )
6751simp3d 974 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
6867simp1d 972 . . . . . . . . . . . . . 14  |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )
69 eliooord 10676 . . . . . . . . . . . . . 14  |-  ( E  e.  ( 0 (,) 1 )  ->  (
0  <  E  /\  E  <  1 ) )
7068, 69syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0  <  E  /\  E  <  1
) )
7170simprd 451 . . . . . . . . . . . 12  |-  ( ph  ->  E  <  1 )
7257, 58, 26, 66, 71lttrd 8945 . . . . . . . . . . 11  |-  ( ph  ->  ( L  x.  E
)  <  1 )
73 4pos 9800 . . . . . . . . . . . . 13  |-  0  <  4
7439, 73jctir 526 . . . . . . . . . . . 12  |-  ( ph  ->  ( 4  e.  RR  /\  0  <  4 ) )
75 ltmul2 9575 . . . . . . . . . . . 12  |-  ( ( ( L  x.  E
)  e.  RR  /\  1  e.  RR  /\  (
4  e.  RR  /\  0  <  4 ) )  ->  ( ( L  x.  E )  <  1  <->  ( 4  x.  ( L  x.  E
) )  <  (
4  x.  1 ) ) )
7657, 26, 74, 75syl3anc 1187 . . . . . . . . . . 11  |-  ( ph  ->  ( ( L  x.  E )  <  1  <->  ( 4  x.  ( L  x.  E ) )  <  ( 4  x.  1 ) ) )
7772, 76mpbid 203 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( L  x.  E )
)  <  ( 4  x.  1 ) )
78 4cn 9788 . . . . . . . . . . 11  |-  4  e.  CC
7978mulid1i 8807 . . . . . . . . . 10  |-  ( 4  x.  1 )  =  4
8077, 79syl6breq 4036 . . . . . . . . 9  |-  ( ph  ->  ( 4  x.  ( L  x.  E )
)  <  4 )
8139, 39, 53ltmuldivd 10400 . . . . . . . . 9  |-  ( ph  ->  ( ( 4  x.  ( L  x.  E
) )  <  4  <->  4  <  ( 4  / 
( L  x.  E
) ) ) )
8280, 81mpbid 203 . . . . . . . 8  |-  ( ph  ->  4  <  ( 4  /  ( L  x.  E ) ) )
8312simpld 447 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  RR+ )
8483, 55rpaddcld 10372 . . . . . . . . . 10  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+ )
8584rpred 10357 . . . . . . . . 9  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR )
8656, 83ltaddrp2d 10387 . . . . . . . . 9  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  <  ( Y  +  ( 4  / 
( L  x.  E
) ) ) )
8785resqcld 11237 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  RR )
8813simpld 447 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  RR+ )
8951simp2d 973 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  RR+ )
90 2z 10021 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
91 rpexpcl 11088 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  RR+  /\  2  e.  ZZ )  ->  ( K ^ 2 )  e.  RR+ )
9289, 90, 91sylancl 646 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K ^ 2 )  e.  RR+ )
9388, 92rpmulcld 10373 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X  x.  ( K ^ 2 ) )  e.  RR+ )
9446nnzi 10014 . . . . . . . . . . . . . . . 16  |-  4  e.  ZZ
95 rpexpcl 11088 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  x.  ( K ^ 2 ) )  e.  RR+  /\  4  e.  ZZ )  ->  (
( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
9693, 94, 95sylancl 646 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+ )
97 3nn0 9950 . . . . . . . . . . . . . . . . . . . . . 22  |-  3  e.  NN0
98 2nn 9844 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  NN
9997, 98decnncl 10104 . . . . . . . . . . . . . . . . . . . . 21  |- ; 3 2  e.  NN
100 nnrp 10330 . . . . . . . . . . . . . . . . . . . . 21  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
10199, 100ax-mp 10 . . . . . . . . . . . . . . . . . . . 20  |- ; 3 2  e.  RR+
102 rpmulcl 10342 . . . . . . . . . . . . . . . . . . . 20  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
103101, 4, 102sylancr 647 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
10467simp3d 974 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( U  -  E
)  e.  RR+ )
105 rpexpcl 11088 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( E  e.  RR+  /\  2  e.  ZZ )  ->  ( E ^ 2 )  e.  RR+ )
10652, 90, 105sylancl 646 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( E ^ 2 )  e.  RR+ )
10750, 106rpmulcld 10373 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( L  x.  ( E ^ 2 ) )  e.  RR+ )
108104, 107rpmulcld 10373 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  RR+ )
109103, 108rpdivcld 10374 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  e.  RR+ )
110 3nn 9845 . . . . . . . . . . . . . . . . . . . . 21  |-  3  e.  NN
111 nnrp 10330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 3  e.  NN  ->  3  e.  RR+ )
112110, 111ax-mp 10 . . . . . . . . . . . . . . . . . . . 20  |-  3  e.  RR+
113 rpmulcl 10342 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  RR+  /\  3  e.  RR+ )  ->  ( U  x.  3 )  e.  RR+ )
1148, 112, 113sylancl 646 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( U  x.  3 )  e.  RR+ )
115114, 14rpaddcld 10372 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  RR+ )
116109, 115rpmulcld 10373 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR+ )
117116rpred 10357 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR )
118117rpefcld 12347 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  e.  RR+ )
11996, 118rpaddcld 10372 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  RR+ )
12087, 119ltaddrpd 10386 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) ) )
121120, 15syl6breqr 4037 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  W )
12287, 17, 22, 121, 23ltletrd 8944 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  Z )
12324rprege0d 10364 . . . . . . . . . . . 12  |-  ( ph  ->  ( Z  e.  RR  /\  0  <_  Z )
)
124 resqrth 11706 . . . . . . . . . . . 12  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
) ^ 2 )  =  Z )
125123, 124syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  Z
) ^ 2 )  =  Z )
126122, 125breqtrrd 4023 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  <  ( ( sqr `  Z ) ^ 2 ) )
12784rprege0d 10364 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) )  e.  RR  /\  0  <_  ( Y  +  ( 4  / 
( L  x.  E
) ) ) ) )
12829rprege0d 10364 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  Z
)  e.  RR  /\  0  <_  ( sqr `  Z
) ) )
129 lt2sq 11143 . . . . . . . . . . 11  |-  ( ( ( ( Y  +  ( 4  /  ( L  x.  E )
) )  e.  RR  /\  0  <_  ( Y  +  ( 4  / 
( L  x.  E
) ) ) )  /\  ( ( sqr `  Z )  e.  RR  /\  0  <_  ( sqr `  Z ) ) )  ->  ( ( Y  +  ( 4  / 
( L  x.  E
) ) )  < 
( sqr `  Z
)  <->  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  <  (
( sqr `  Z
) ^ 2 ) ) )
130127, 128, 129syl2anc 645 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) )  <  ( sqr `  Z )  <->  ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  < 
( ( sqr `  Z
) ^ 2 ) ) )
131126, 130mpbird 225 . . . . . . . . 9  |-  ( ph  ->  ( Y  +  ( 4  /  ( L  x.  E ) ) )  <  ( sqr `  Z ) )
13256, 85, 30, 86, 131lttrd 8945 . . . . . . . 8  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  <  ( sqr `  Z ) )
13339, 56, 30, 82, 132lttrd 8945 . . . . . . 7  |-  ( ph  ->  4  <  ( sqr `  Z ) )
13428, 39, 30, 45, 133lttrd 8945 . . . . . 6  |-  ( ph  ->  _e  <  ( sqr `  Z ) )
13526, 28, 30, 37, 134lttrd 8945 . . . . 5  |-  ( ph  ->  1  <  ( sqr `  Z ) )
136 0le1 9265 . . . . . . 7  |-  0  <_  1
137136a1i 12 . . . . . 6  |-  ( ph  ->  0  <_  1 )
138 lt2sq 11143 . . . . . 6  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( ( sqr `  Z )  e.  RR  /\  0  <_  ( sqr `  Z ) ) )  ->  ( 1  < 
( sqr `  Z
)  <->  ( 1 ^ 2 )  <  (
( sqr `  Z
) ^ 2 ) ) )
13926, 137, 128, 138syl21anc 1186 . . . . 5  |-  ( ph  ->  ( 1  <  ( sqr `  Z )  <->  ( 1 ^ 2 )  < 
( ( sqr `  Z
) ^ 2 ) ) )
140135, 139mpbid 203 . . . 4  |-  ( ph  ->  ( 1 ^ 2 )  <  ( ( sqr `  Z ) ^ 2 ) )
141 sq1 11164 . . . . 5  |-  ( 1 ^ 2 )  =  1
142141a1i 12 . . . 4  |-  ( ph  ->  ( 1 ^ 2 )  =  1 )
143140, 142, 1253brtr3d 4026 . . 3  |-  ( ph  ->  1  <  Z )
14428, 30, 134ltled 8935 . . 3  |-  ( ph  ->  _e  <_  ( sqr `  Z ) )
14522, 83rerpdivcld 10384 . . . 4  |-  ( ph  ->  ( Z  /  Y
)  e.  RR )
14683rpred 10357 . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
147146, 55ltaddrpd 10386 . . . . . . . 8  |-  ( ph  ->  Y  <  ( Y  +  ( 4  / 
( L  x.  E
) ) ) )
148146, 85, 30, 147, 131lttrd 8945 . . . . . . 7  |-  ( ph  ->  Y  <  ( sqr `  Z ) )
149146, 30, 29, 148ltmul2dd 10409 . . . . . 6  |-  ( ph  ->  ( ( sqr `  Z
)  x.  Y )  <  ( ( sqr `  Z )  x.  ( sqr `  Z ) ) )
150 remsqsqr 11707 . . . . . . 7  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
151123, 150syl 17 . . . . . 6  |-  ( ph  ->  ( ( sqr `  Z
)  x.  ( sqr `  Z ) )  =  Z )
152149, 151breqtrd 4021 . . . . 5  |-  ( ph  ->  ( ( sqr `  Z
)  x.  Y )  <  Z )
15330, 22, 83ltmuldivd 10400 . . . . 5  |-  ( ph  ->  ( ( ( sqr `  Z )  x.  Y
)  <  Z  <->  ( sqr `  Z )  <  ( Z  /  Y ) ) )
154152, 153mpbid 203 . . . 4  |-  ( ph  ->  ( sqr `  Z
)  <  ( Z  /  Y ) )
15530, 145, 154ltled 8935 . . 3  |-  ( ph  ->  ( sqr `  Z
)  <_  ( Z  /  Y ) )
156143, 144, 1553jca 1137 . 2  |-  ( ph  ->  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) ) )
15756, 30, 132ltled 8935 . . 3  |-  ( ph  ->  ( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z ) )
15888relogcld 19936 . . . . . 6  |-  ( ph  ->  ( log `  X
)  e.  RR )
15989rpred 10357 . . . . . . 7  |-  ( ph  ->  K  e.  RR )
16067simp2d 973 . . . . . . 7  |-  ( ph  ->  1  <  K )
161159, 160rplogcld 19942 . . . . . 6  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
162158, 161rerpdivcld 10384 . . . . 5  |-  ( ph  ->  ( ( log `  X
)  /  ( log `  K ) )  e.  RR )
163 readdcl 8788 . . . . 5  |-  ( ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  /\  2  e.  RR )  ->  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  e.  RR )
164162, 34, 163sylancl 646 . . . 4  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  e.  RR )
16524relogcld 19936 . . . . . 6  |-  ( ph  ->  ( log `  Z
)  e.  RR )
166165, 161rerpdivcld 10384 . . . . 5  |-  ( ph  ->  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR )
167 nndivre 9749 . . . . 5  |-  ( ( ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  4  e.  NN )  ->  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  e.  RR )
168166, 46, 167sylancl 646 . . . 4  |-  ( ph  ->  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  e.  RR )
16993relogcld 19936 . . . . . 6  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  e.  RR )
170 nndivre 9749 . . . . . . 7  |-  ( ( ( log `  Z
)  e.  RR  /\  4  e.  NN )  ->  ( ( log `  Z
)  /  4 )  e.  RR )
171165, 46, 170sylancl 646 . . . . . 6  |-  ( ph  ->  ( ( log `  Z
)  /  4 )  e.  RR )
172 relogexp 19911 . . . . . . . . 9  |-  ( ( ( X  x.  ( K ^ 2 ) )  e.  RR+  /\  4  e.  ZZ )  ->  ( log `  ( ( X  x.  ( K ^
2 ) ) ^
4 ) )  =  ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) ) )
17393, 94, 172sylancl 646 . . . . . . . 8  |-  ( ph  ->  ( log `  (
( X  x.  ( K ^ 2 ) ) ^ 4 ) )  =  ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) ) )
17496rpred 10357 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR )
175119rpred 10357 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  RR )
176174, 118ltaddrpd 10386 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  <  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
177 rpexpcl 11088 . . . . . . . . . . . . . 14  |-  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) )  e.  RR+  /\  2  e.  ZZ )  ->  (
( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  e.  RR+ )
17884, 90, 177sylancl 646 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  RR+ )
179175, 178ltaddrpd 10386 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  <  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  +  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 ) ) )
18087recnd 8829 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( Y  +  ( 4  /  ( L  x.  E )
) ) ^ 2 )  e.  CC )
181119rpcnd 10359 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  e.  CC )
182180, 181addcomd 8982 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )  =  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  +  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 ) ) )
18315, 182syl5eq 2302 . . . . . . . . . . . 12  |-  ( ph  ->  W  =  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  +  ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 ) ) )
184179, 183breqtrrd 4023 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  <  W )
185175, 17, 22, 184, 23ltletrd 8944 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) )  <  Z )
186174, 175, 22, 176, 185lttrd 8945 . . . . . . . . 9  |-  ( ph  ->  ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  <  Z )
187 logltb 19915 . . . . . . . . . 10  |-  ( ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  e.  RR+  /\  Z  e.  RR+ )  ->  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  < 
Z  <->  ( log `  (
( X  x.  ( K ^ 2 ) ) ^ 4 ) )  <  ( log `  Z
) ) )
18896, 24, 187syl2anc 645 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X  x.  ( K ^
2 ) ) ^
4 )  <  Z  <->  ( log `  ( ( X  x.  ( K ^ 2 ) ) ^ 4 ) )  <  ( log `  Z
) ) )
189186, 188mpbid 203 . . . . . . . 8  |-  ( ph  ->  ( log `  (
( X  x.  ( K ^ 2 ) ) ^ 4 ) )  <  ( log `  Z
) )
190173, 189eqbrtrrd 4019 . . . . . . 7  |-  ( ph  ->  ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) )  < 
( log `  Z
) )
191 ltmuldiv2 9595 . . . . . . . 8  |-  ( ( ( log `  ( X  x.  ( K ^ 2 ) ) )  e.  RR  /\  ( log `  Z )  e.  RR  /\  (
4  e.  RR  /\  0  <  4 ) )  ->  ( ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) )  <  ( log `  Z )  <->  ( log `  ( X  x.  ( K ^ 2 ) ) )  <  ( ( log `  Z )  /  4 ) ) )
192169, 165, 74, 191syl3anc 1187 . . . . . . 7  |-  ( ph  ->  ( ( 4  x.  ( log `  ( X  x.  ( K ^ 2 ) ) ) )  <  ( log `  Z )  <->  ( log `  ( X  x.  ( K ^ 2 ) ) )  <  ( ( log `  Z )  /  4 ) ) )
193190, 192mpbid 203 . . . . . 6  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  <  ( ( log `  Z )  /  4 ) )
194169, 171, 161, 193ltdiv1dd 10410 . . . . 5  |-  ( ph  ->  ( ( log `  ( X  x.  ( K ^ 2 ) ) )  /  ( log `  K ) )  < 
( ( ( log `  Z )  /  4
)  /  ( log `  K ) ) )
19588, 92relogmuld 19938 . . . . . . . 8  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  =  ( ( log `  X )  +  ( log `  ( K ^ 2 ) ) ) )
196 relogexp 19911 . . . . . . . . . 10  |-  ( ( K  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( K ^
2 ) )  =  ( 2  x.  ( log `  K ) ) )
19789, 90, 196sylancl 646 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( K ^ 2 ) )  =  ( 2  x.  ( log `  K
) ) )
198197oveq2d 5808 . . . . . . . 8  |-  ( ph  ->  ( ( log `  X
)  +  ( log `  ( K ^ 2 ) ) )  =  ( ( log `  X
)  +  ( 2  x.  ( log `  K
) ) ) )
199195, 198eqtrd 2290 . . . . . . 7  |-  ( ph  ->  ( log `  ( X  x.  ( K ^ 2 ) ) )  =  ( ( log `  X )  +  ( 2  x.  ( log `  K
) ) ) )
200199oveq1d 5807 . . . . . 6  |-  ( ph  ->  ( ( log `  ( X  x.  ( K ^ 2 ) ) )  /  ( log `  K ) )  =  ( ( ( log `  X )  +  ( 2  x.  ( log `  K ) ) )  /  ( log `  K
) ) )
201158recnd 8829 . . . . . . 7  |-  ( ph  ->  ( log `  X
)  e.  CC )
20234a1i 12 . . . . . . . . 9  |-  ( ph  ->  2  e.  RR )
203202recnd 8829 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
204161rpcnd 10359 . . . . . . . 8  |-  ( ph  ->  ( log `  K
)  e.  CC )
205203, 204mulcld 8823 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( log `  K ) )  e.  CC )
206161rpcnne0d 10366 . . . . . . 7  |-  ( ph  ->  ( ( log `  K
)  e.  CC  /\  ( log `  K )  =/=  0 ) )
207 divdir 9415 . . . . . . 7  |-  ( ( ( log `  X
)  e.  CC  /\  ( 2  x.  ( log `  K ) )  e.  CC  /\  (
( log `  K
)  e.  CC  /\  ( log `  K )  =/=  0 ) )  ->  ( ( ( log `  X )  +  ( 2  x.  ( log `  K
) ) )  / 
( log `  K
) )  =  ( ( ( log `  X
)  /  ( log `  K ) )  +  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) ) ) )
208201, 205, 206, 207syl3anc 1187 . . . . . 6  |-  ( ph  ->  ( ( ( log `  X )  +  ( 2  x.  ( log `  K ) ) )  /  ( log `  K
) )  =  ( ( ( log `  X
)  /  ( log `  K ) )  +  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) ) ) )
209206simprd 451 . . . . . . . 8  |-  ( ph  ->  ( log `  K
)  =/=  0 )
210203, 204, 209divcan4d 9510 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) )  =  2 )
211210oveq2d 5808 . . . . . 6  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  ( ( 2  x.  ( log `  K
) )  /  ( log `  K ) ) )  =  ( ( ( log `  X
)  /  ( log `  K ) )  +  2 ) )
212200, 208, 2113eqtrd 2294 . . . . 5  |-  ( ph  ->  ( ( log `  ( X  x.  ( K ^ 2 ) ) )  /  ( log `  K ) )  =  ( ( ( log `  X )  /  ( log `  K ) )  +  2 ) )
213165recnd 8829 . . . . . 6  |-  ( ph  ->  ( log `  Z
)  e.  CC )
214 rpcnne0 10338 . . . . . . 7  |-  ( 4  e.  RR+  ->  ( 4  e.  CC  /\  4  =/=  0 ) )
21548, 214mp1i 13 . . . . . 6  |-  ( ph  ->  ( 4  e.  CC  /\  4  =/=  0 ) )
216 divdiv32 9436 . . . . . 6  |-  ( ( ( log `  Z
)  e.  CC  /\  ( 4  e.  CC  /\  4  =/=  0 )  /\  ( ( log `  K )  e.  CC  /\  ( log `  K
)  =/=  0 ) )  ->  ( (
( log `  Z
)  /  4 )  /  ( log `  K
) )  =  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
4 ) )
217213, 215, 206, 216syl3anc 1187 . . . . 5  |-  ( ph  ->  ( ( ( log `  Z )  /  4
)  /  ( log `  K ) )  =  ( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
218194, 212, 2173brtr3d 4026 . . . 4  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  < 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
219164, 168, 218ltled 8935 . . 3  |-  ( ph  ->  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 ) )
220115rpred 10357 . . . . 5  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  RR )
221108, 103rpdivcld 10374 . . . . . . 7  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  e.  RR+ )
222221rpred 10357 . . . . . 6  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  e.  RR )
223222, 165remulcld 8831 . . . . 5  |-  ( ph  ->  ( ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B ) )  x.  ( log `  Z
) )  e.  RR )
224115rpcnd 10359 . . . . . . . . 9  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  e.  CC )
225108rpcnne0d 10366 . . . . . . . . 9  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  CC  /\  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  =/=  0 ) )
226103rpcnne0d 10366 . . . . . . . . 9  |-  ( ph  ->  ( (; 3 2  x.  B
)  e.  CC  /\  (; 3 2  x.  B )  =/=  0 ) )
227 divdiv2 9440 . . . . . . . . 9  |-  ( ( ( ( U  x.  3 )  +  C
)  e.  CC  /\  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  CC  /\  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  =/=  0 )  /\  ( (; 3 2  x.  B
)  e.  CC  /\  (; 3 2  x.  B )  =/=  0 ) )  ->  ( ( ( U  x.  3 )  +  C )  / 
( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  =  ( ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B
) )  /  (
( U  -  E
)  x.  ( L  x.  ( E ^
2 ) ) ) ) )
228224, 225, 226, 227syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  /  (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  =  ( ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B
) )  /  (
( U  -  E
)  x.  ( L  x.  ( E ^
2 ) ) ) ) )
229103rpcnd 10359 . . . . . . . . . 10  |-  ( ph  ->  (; 3 2  x.  B
)  e.  CC )
230224, 229mulcomd 8824 . . . . . . . . 9  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B ) )  =  ( (; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) ) )
231230oveq1d 5807 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( U  x.  3 )  +  C )  x.  (; 3 2  x.  B
) )  /  (
( U  -  E
)  x.  ( L  x.  ( E ^
2 ) ) ) )  =  ( ( (; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) ) )
232 div23 9411 . . . . . . . . 9  |-  ( ( (; 3 2  x.  B
)  e.  CC  /\  ( ( U  x.  3 )  +  C
)  e.  CC  /\  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  e.  CC  /\  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  =/=  0 ) )  ->  ( (
(; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  =  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )
233229, 224, 225, 232syl3anc 1187 . . . . . . . 8  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  x.  ( ( U  x.  3 )  +  C ) )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  =  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )
234228, 231, 2333eqtrd 2294 . . . . . . 7  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  /  (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  =  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )
235117reefcld 12331 . . . . . . . . . 10  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  e.  RR )
236235, 96ltaddrp2d 10387 . . . . . . . . . 10  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( ( ( X  x.  ( K ^
2 ) ) ^
4 )  +  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
237235, 175, 22, 236, 185lttrd 8945 . . . . . . . . 9  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
Z )
23824reeflogd 19937 . . . . . . . . 9  |-  ( ph  ->  ( exp `  ( log `  Z ) )  =  Z )
239237, 238breqtrrd 4023 . . . . . . . 8  |-  ( ph  ->  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( exp `  ( log `  Z ) ) )
240 eflt 12359 . . . . . . . . 9  |-  ( ( ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  e.  RR  /\  ( log `  Z
)  e.  RR )  ->  ( ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  <  ( log `  Z )  <->  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( exp `  ( log `  Z ) ) ) )
241117, 165, 240syl2anc 645 . . . . . . . 8  |-  ( ph  ->  ( ( ( (; 3
2  x.  B )  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  (
( U  x.  3 )  +  C ) )  <  ( log `  Z )  <->  ( exp `  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) )  < 
( exp `  ( log `  Z ) ) ) )
242239, 241mpbird 225 . . . . . . 7  |-  ( ph  ->  ( ( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) )  <  ( log `  Z ) )
243234, 242eqbrtrd 4017 . . . . . 6  |-  ( ph  ->  ( ( ( U  x.  3 )  +  C )  /  (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  < 
( log `  Z
) )
244220, 165, 221ltdivmuld 10404 . . . . . 6  |-  ( ph  ->  ( ( ( ( U  x.  3 )  +  C )  / 
( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) ) )  < 
( log `  Z
)  <->  ( ( U  x.  3 )  +  C )  <  (
( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  x.  ( log `  Z ) ) ) )
245243, 244mpbid 203 . . . . 5  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  <  ( (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  x.  ( log `  Z ) ) )
246220, 223, 245ltled 8935 . . . 4  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  <_  ( (
( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  x.  ( log `  Z ) ) )
247104rpcnd 10359 . . . . . 6  |-  ( ph  ->  ( U  -  E
)  e.  CC )
248107rpcnd 10359 . . . . . 6  |-  ( ph  ->  ( L  x.  ( E ^ 2 ) )  e.  CC )
249 divass 9410 . . . . . 6  |-  ( ( ( U  -  E
)  e.  CC  /\  ( L  x.  ( E ^ 2 ) )  e.  CC  /\  (
(; 3 2  x.  B
)  e.  CC  /\  (; 3 2  x.  B )  =/=  0 ) )  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B ) )  =  ( ( U  -  E )  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) ) )
250247, 248, 226, 249syl3anc 1187 . . . . 5  |-  ( ph  ->  ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B
) )  =  ( ( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) ) )
251250oveq1d 5807 . . . 4  |-  ( ph  ->  ( ( ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) )  /  (; 3 2  x.  B ) )  x.  ( log `  Z
) )  =  ( ( ( U  -  E )  x.  (
( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) )
252246, 251breqtrd 4021 . . 3  |-  ( ph  ->  ( ( U  x.  3 )  +  C
)  <_  ( (
( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) )
253157, 219, 2523jca 1137 . 2  |-  ( ph  ->  ( ( 4  / 
( L  x.  E
) )  <_  ( sqr `  Z )  /\  ( ( ( log `  X )  /  ( log `  K ) )  +  2 )  <_ 
( ( ( log `  Z )  /  ( log `  K ) )  /  4 )  /\  ( ( U  x.  3 )  +  C
)  <_  ( (
( U  -  E
)  x.  ( ( L  x.  ( E ^ 2 ) )  /  (; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) )
25424, 156, 2533jca 1137 1  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710    +oocpnf 8832   RR*cxr 8834    < clt 8835    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   3c3 9764   4c4 9765   ZZcz 9991  ;cdc 10091   RR+crp 10321   (,)cioo 10622   [,)cico 10624   ^cexp 11070   sqrcsqr 11683   expce 12305   _eceu 12306   logclog 19874  ψcchp 20292
This theorem is referenced by:  pntlemg  20709  pntlemh  20710  pntlemn  20711  pntlemq  20712  pntlemr  20713  pntlemj  20714  pntlemf  20716  pntlemk  20717  pntlemo  20718
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-sum 12124  df-ef 12311  df-e 12312  df-sin 12313  df-cos 12314  df-pi 12316  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-submnd 14378  df-mulg 14454  df-cntz 14755  df-cmn 15053  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-limc 19178  df-dv 19179  df-log 19876
  Copyright terms: Public domain W3C validator